MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjiun Structured version   Visualization version   GIF version

Theorem disjiun 5076
Description: A disjoint collection yields disjoint indexed unions for disjoint index sets. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjiun ((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐷
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjiun
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-disj 5055 . . . 4 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐵)
2 elin 3913 . . . . . . . . . 10 (𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) ↔ (𝑦 𝑥𝐶 𝐵𝑦 𝑥𝐷 𝐵))
3 eliun 4942 . . . . . . . . . . 11 (𝑦 𝑥𝐶 𝐵 ↔ ∃𝑥𝐶 𝑦𝐵)
4 eliun 4942 . . . . . . . . . . 11 (𝑦 𝑥𝐷 𝐵 ↔ ∃𝑥𝐷 𝑦𝐵)
53, 4anbi12i 627 . . . . . . . . . 10 ((𝑦 𝑥𝐶 𝐵𝑦 𝑥𝐷 𝐵) ↔ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵))
62, 5bitri 274 . . . . . . . . 9 (𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) ↔ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵))
7 nfv 1916 . . . . . . . . . . . 12 𝑧 𝑦𝐵
87rmo2 3830 . . . . . . . . . . 11 (∃*𝑥𝐴 𝑦𝐵 ↔ ∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧))
9 an4 653 . . . . . . . . . . . . 13 (((𝐶𝐴𝐷𝐴) ∧ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵)) ↔ ((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)))
10 ssralv 3997 . . . . . . . . . . . . . . . . . . 19 (𝐶𝐴 → (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧)))
1110impcom 408 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐶𝐴) → ∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧))
12 r19.29 3113 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐶 𝑦𝐵) → ∃𝑥𝐶 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵))
13 id 22 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦𝐵𝑥 = 𝑧) → (𝑦𝐵𝑥 = 𝑧))
1413imp 407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑥 = 𝑧)
1514eleq1d 2821 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → (𝑥𝐶𝑧𝐶))
1615biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐶 → (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐶))
1716rexlimiv 3141 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥𝐶 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐶)
1812, 17syl 17 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐶 𝑦𝐵) → 𝑧𝐶)
1918ex 413 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐶 (𝑦𝐵𝑥 = 𝑧) → (∃𝑥𝐶 𝑦𝐵𝑧𝐶))
2011, 19syl 17 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐶𝐴) → (∃𝑥𝐶 𝑦𝐵𝑧𝐶))
2120expimpd 454 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) → 𝑧𝐶))
22 ssralv 3997 . . . . . . . . . . . . . . . . . . 19 (𝐷𝐴 → (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧)))
2322impcom 408 . . . . . . . . . . . . . . . . . 18 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐷𝐴) → ∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧))
24 r19.29 3113 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐷 𝑦𝐵) → ∃𝑥𝐷 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵))
2514eleq1d 2821 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → (𝑥𝐷𝑧𝐷))
2625biimpcd 248 . . . . . . . . . . . . . . . . . . . . 21 (𝑥𝐷 → (((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐷))
2726rexlimiv 3141 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥𝐷 ((𝑦𝐵𝑥 = 𝑧) ∧ 𝑦𝐵) → 𝑧𝐷)
2824, 27syl 17 . . . . . . . . . . . . . . . . . . 19 ((∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧) ∧ ∃𝑥𝐷 𝑦𝐵) → 𝑧𝐷)
2928ex 413 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐷 (𝑦𝐵𝑥 = 𝑧) → (∃𝑥𝐷 𝑦𝐵𝑧𝐷))
3023, 29syl 17 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) ∧ 𝐷𝐴) → (∃𝑥𝐷 𝑦𝐵𝑧𝐷))
3130expimpd 454 . . . . . . . . . . . . . . . 16 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ((𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵) → 𝑧𝐷))
3221, 31anim12d 609 . . . . . . . . . . . . . . 15 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝑧𝐶𝑧𝐷)))
33 inelcm 4410 . . . . . . . . . . . . . . 15 ((𝑧𝐶𝑧𝐷) → (𝐶𝐷) ≠ ∅)
3432, 33syl6 35 . . . . . . . . . . . . . 14 (∀𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝐶𝐷) ≠ ∅))
3534exlimiv 1932 . . . . . . . . . . . . 13 (∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴 ∧ ∃𝑥𝐶 𝑦𝐵) ∧ (𝐷𝐴 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝐶𝐷) ≠ ∅))
369, 35biimtrid 241 . . . . . . . . . . . 12 (∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → (((𝐶𝐴𝐷𝐴) ∧ (∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵)) → (𝐶𝐷) ≠ ∅))
3736expd 416 . . . . . . . . . . 11 (∃𝑧𝑥𝐴 (𝑦𝐵𝑥 = 𝑧) → ((𝐶𝐴𝐷𝐴) → ((∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵) → (𝐶𝐷) ≠ ∅)))
388, 37sylbi 216 . . . . . . . . . 10 (∃*𝑥𝐴 𝑦𝐵 → ((𝐶𝐴𝐷𝐴) → ((∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵) → (𝐶𝐷) ≠ ∅)))
3938impcom 408 . . . . . . . . 9 (((𝐶𝐴𝐷𝐴) ∧ ∃*𝑥𝐴 𝑦𝐵) → ((∃𝑥𝐶 𝑦𝐵 ∧ ∃𝑥𝐷 𝑦𝐵) → (𝐶𝐷) ≠ ∅))
406, 39biimtrid 241 . . . . . . . 8 (((𝐶𝐴𝐷𝐴) ∧ ∃*𝑥𝐴 𝑦𝐵) → (𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) → (𝐶𝐷) ≠ ∅))
4140necon2bd 2956 . . . . . . 7 (((𝐶𝐴𝐷𝐴) ∧ ∃*𝑥𝐴 𝑦𝐵) → ((𝐶𝐷) = ∅ → ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
4241impancom 452 . . . . . 6 (((𝐶𝐴𝐷𝐴) ∧ (𝐶𝐷) = ∅) → (∃*𝑥𝐴 𝑦𝐵 → ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
43423impa 1109 . . . . 5 ((𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅) → (∃*𝑥𝐴 𝑦𝐵 → ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
4443alimdv 1918 . . . 4 ((𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅) → (∀𝑦∃*𝑥𝐴 𝑦𝐵 → ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
451, 44biimtrid 241 . . 3 ((𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅) → (Disj 𝑥𝐴 𝐵 → ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵)))
4645impcom 408 . 2 ((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵))
47 eq0 4289 . 2 (( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅ ↔ ∀𝑦 ¬ 𝑦 ∈ ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵))
4846, 47sylibr 233 1 ((Disj 𝑥𝐴 𝐵 ∧ (𝐶𝐴𝐷𝐴 ∧ (𝐶𝐷) = ∅)) → ( 𝑥𝐶 𝐵 𝑥𝐷 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086  wal 1538   = wceq 1540  wex 1780  wcel 2105  wne 2940  wral 3061  wrex 3070  ∃*wrmo 3348  cin 3896  wss 3897  c0 4268   ciun 4938  Disj wdisj 5054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3349  df-v 3443  df-dif 3900  df-in 3904  df-ss 3914  df-nul 4269  df-iun 4940  df-disj 5055
This theorem is referenced by:  disjxiun  5086  fsumiun  15624  uniioombllem4  24848  disjiun2  42915  sge0iunmptlemfi  44277
  Copyright terms: Public domain W3C validator