Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrdx Structured version   Visualization version   GIF version

Theorem disjrdx 32511
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
disjrdx.1 (𝜑𝐹:𝐴1-1-onto𝐶)
disjrdx.2 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
Assertion
Ref Expression
disjrdx (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑦)

Proof of Theorem disjrdx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjrdx.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐶)
2 f1of 6843 . . . . . . 7 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
31, 2syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐶)
43ffvelcdmda 7098 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐶)
5 f1ofveu 7418 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐶𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
61, 5sylan 578 . . . . . 6 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
7 eqcom 2733 . . . . . . 7 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87reubii 3373 . . . . . 6 (∃!𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
96, 8sylib 217 . . . . 5 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
10 disjrdx.2 . . . . . 6 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
1110eleq2d 2812 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → (𝑧𝐷𝑧𝐵))
124, 9, 11rmoxfrd 32421 . . . 4 (𝜑 → (∃*𝑦𝐶 𝑧𝐷 ↔ ∃*𝑥𝐴 𝑧𝐵))
1312bicomd 222 . . 3 (𝜑 → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐶 𝑧𝐷))
1413albidv 1916 . 2 (𝜑 → (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷))
15 df-disj 5119 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
16 df-disj 5119 . 2 (Disj 𝑦𝐶 𝐷 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷)
1714, 15, 163bitr4g 313 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wal 1532   = wceq 1534  wcel 2099  ∃!wreu 3362  ∃*wrmo 3363  Disj wdisj 5118  wf 6550  1-1-ontowf1o 6553  cfv 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-disj 5119  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562
This theorem is referenced by:  tocyccntz  33022  volmeas  34064  carsggect  34152
  Copyright terms: Public domain W3C validator