Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrdx | Structured version Visualization version GIF version |
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
Ref | Expression |
---|---|
disjrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) |
disjrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
disjrdx | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) | |
2 | f1of 6700 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelrnda 6943 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | f1ofveu 7250 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
6 | 1, 5 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
7 | eqcom 2745 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
8 | 7 | reubii 3317 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
9 | 6, 8 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
10 | disjrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
11 | 10 | eleq2d 2824 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
12 | 4, 9, 11 | rmoxfrd 30742 | . . . 4 ⊢ (𝜑 → (∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
13 | 12 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
14 | 13 | albidv 1924 | . 2 ⊢ (𝜑 → (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
15 | df-disj 5036 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
16 | df-disj 5036 | . 2 ⊢ (Disj 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷) | |
17 | 14, 15, 16 | 3bitr4g 313 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∃!wreu 3065 ∃*wrmo 3066 Disj wdisj 5035 ⟶wf 6414 –1-1-onto→wf1o 6417 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-disj 5036 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: tocyccntz 31313 volmeas 32099 carsggect 32185 |
Copyright terms: Public domain | W3C validator |