Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrdx Structured version   Visualization version   GIF version

Theorem disjrdx 32613
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
disjrdx.1 (𝜑𝐹:𝐴1-1-onto𝐶)
disjrdx.2 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
Assertion
Ref Expression
disjrdx (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑦)

Proof of Theorem disjrdx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjrdx.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐶)
2 f1of 6862 . . . . . . 7 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
31, 2syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐶)
43ffvelcdmda 7118 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐶)
5 f1ofveu 7442 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐶𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
61, 5sylan 579 . . . . . 6 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
7 eqcom 2747 . . . . . . 7 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87reubii 3397 . . . . . 6 (∃!𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
96, 8sylib 218 . . . . 5 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
10 disjrdx.2 . . . . . 6 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
1110eleq2d 2830 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → (𝑧𝐷𝑧𝐵))
124, 9, 11rmoxfrd 32521 . . . 4 (𝜑 → (∃*𝑦𝐶 𝑧𝐷 ↔ ∃*𝑥𝐴 𝑧𝐵))
1312bicomd 223 . . 3 (𝜑 → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐶 𝑧𝐷))
1413albidv 1919 . 2 (𝜑 → (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷))
15 df-disj 5134 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
16 df-disj 5134 . 2 (Disj 𝑦𝐶 𝐷 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷)
1714, 15, 163bitr4g 314 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  ∃!wreu 3386  ∃*wrmo 3387  Disj wdisj 5133  wf 6569  1-1-ontowf1o 6572  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-disj 5134  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581
This theorem is referenced by:  tocyccntz  33137  volmeas  34195  carsggect  34283
  Copyright terms: Public domain W3C validator