Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrdx Structured version   Visualization version   GIF version

Theorem disjrdx 32090
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
disjrdx.1 (𝜑𝐹:𝐴1-1-onto𝐶)
disjrdx.2 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
Assertion
Ref Expression
disjrdx (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑦)

Proof of Theorem disjrdx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjrdx.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐶)
2 f1of 6833 . . . . . . 7 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
31, 2syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐶)
43ffvelcdmda 7086 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐶)
5 f1ofveu 7406 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐶𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
61, 5sylan 579 . . . . . 6 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
7 eqcom 2738 . . . . . . 7 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87reubii 3384 . . . . . 6 (∃!𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
96, 8sylib 217 . . . . 5 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
10 disjrdx.2 . . . . . 6 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
1110eleq2d 2818 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → (𝑧𝐷𝑧𝐵))
124, 9, 11rmoxfrd 32001 . . . 4 (𝜑 → (∃*𝑦𝐶 𝑧𝐷 ↔ ∃*𝑥𝐴 𝑧𝐵))
1312bicomd 222 . . 3 (𝜑 → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐶 𝑧𝐷))
1413albidv 1922 . 2 (𝜑 → (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷))
15 df-disj 5114 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
16 df-disj 5114 . 2 (Disj 𝑦𝐶 𝐷 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷)
1714, 15, 163bitr4g 314 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wcel 2105  ∃!wreu 3373  ∃*wrmo 3374  Disj wdisj 5113  wf 6539  1-1-ontowf1o 6542  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-disj 5114  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551
This theorem is referenced by:  tocyccntz  32574  volmeas  33528  carsggect  33616
  Copyright terms: Public domain W3C validator