| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrdx | Structured version Visualization version GIF version | ||
| Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
| Ref | Expression |
|---|---|
| disjrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) |
| disjrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| disjrdx | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) | |
| 2 | f1of 6782 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| 4 | 3 | ffvelcdmda 7038 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
| 5 | f1ofveu 7363 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
| 6 | 1, 5 | sylan 580 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 7 | eqcom 2736 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
| 8 | 7 | reubii 3360 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 9 | 6, 8 | sylib 218 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
| 10 | disjrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
| 11 | 10 | eleq2d 2814 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
| 12 | 4, 9, 11 | rmoxfrd 32395 | . . . 4 ⊢ (𝜑 → (∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
| 13 | 12 | bicomd 223 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
| 14 | 13 | albidv 1920 | . 2 ⊢ (𝜑 → (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
| 15 | df-disj 5070 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
| 16 | df-disj 5070 | . 2 ⊢ (Disj 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷) | |
| 17 | 14, 15, 16 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∃!wreu 3349 ∃*wrmo 3350 Disj wdisj 5069 ⟶wf 6495 –1-1-onto→wf1o 6498 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-disj 5070 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: tocyccntz 33074 volmeas 34194 carsggect 34282 |
| Copyright terms: Public domain | W3C validator |