![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrdx | Structured version Visualization version GIF version |
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
Ref | Expression |
---|---|
disjrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) |
disjrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
disjrdx | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) | |
2 | f1of 6833 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelcdmda 7086 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | f1ofveu 7406 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
6 | 1, 5 | sylan 579 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
7 | eqcom 2738 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
8 | 7 | reubii 3384 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
9 | 6, 8 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
10 | disjrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
11 | 10 | eleq2d 2818 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
12 | 4, 9, 11 | rmoxfrd 32001 | . . . 4 ⊢ (𝜑 → (∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
13 | 12 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
14 | 13 | albidv 1922 | . 2 ⊢ (𝜑 → (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
15 | df-disj 5114 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
16 | df-disj 5114 | . 2 ⊢ (Disj 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷) | |
17 | 14, 15, 16 | 3bitr4g 314 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ∃!wreu 3373 ∃*wrmo 3374 Disj wdisj 5113 ⟶wf 6539 –1-1-onto→wf1o 6542 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-disj 5114 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 |
This theorem is referenced by: tocyccntz 32574 volmeas 33528 carsggect 33616 |
Copyright terms: Public domain | W3C validator |