Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjrdx Structured version   Visualization version   GIF version

Theorem disjrdx 32577
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.)
Hypotheses
Ref Expression
disjrdx.1 (𝜑𝐹:𝐴1-1-onto𝐶)
disjrdx.2 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
Assertion
Ref Expression
disjrdx (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑦)

Proof of Theorem disjrdx
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 disjrdx.1 . . . . . . 7 (𝜑𝐹:𝐴1-1-onto𝐶)
2 f1of 6823 . . . . . . 7 (𝐹:𝐴1-1-onto𝐶𝐹:𝐴𝐶)
31, 2syl 17 . . . . . 6 (𝜑𝐹:𝐴𝐶)
43ffvelcdmda 7079 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝐶)
5 f1ofveu 7404 . . . . . . 7 ((𝐹:𝐴1-1-onto𝐶𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
61, 5sylan 580 . . . . . 6 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 (𝐹𝑥) = 𝑦)
7 eqcom 2743 . . . . . . 7 ((𝐹𝑥) = 𝑦𝑦 = (𝐹𝑥))
87reubii 3373 . . . . . 6 (∃!𝑥𝐴 (𝐹𝑥) = 𝑦 ↔ ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
96, 8sylib 218 . . . . 5 ((𝜑𝑦𝐶) → ∃!𝑥𝐴 𝑦 = (𝐹𝑥))
10 disjrdx.2 . . . . . 6 ((𝜑𝑦 = (𝐹𝑥)) → 𝐷 = 𝐵)
1110eleq2d 2821 . . . . 5 ((𝜑𝑦 = (𝐹𝑥)) → (𝑧𝐷𝑧𝐵))
124, 9, 11rmoxfrd 32479 . . . 4 (𝜑 → (∃*𝑦𝐶 𝑧𝐷 ↔ ∃*𝑥𝐴 𝑧𝐵))
1312bicomd 223 . . 3 (𝜑 → (∃*𝑥𝐴 𝑧𝐵 ↔ ∃*𝑦𝐶 𝑧𝐷))
1413albidv 1920 . 2 (𝜑 → (∀𝑧∃*𝑥𝐴 𝑧𝐵 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷))
15 df-disj 5092 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑧∃*𝑥𝐴 𝑧𝐵)
16 df-disj 5092 . 2 (Disj 𝑦𝐶 𝐷 ↔ ∀𝑧∃*𝑦𝐶 𝑧𝐷)
1714, 15, 163bitr4g 314 1 (𝜑 → (Disj 𝑥𝐴 𝐵Disj 𝑦𝐶 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  ∃!wreu 3362  ∃*wrmo 3363  Disj wdisj 5091  wf 6532  1-1-ontowf1o 6535  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-disj 5092  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544
This theorem is referenced by:  tocyccntz  33160  volmeas  34267  carsggect  34355
  Copyright terms: Public domain W3C validator