Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjrdx | Structured version Visualization version GIF version |
Description: Re-index a disjunct collection statement. (Contributed by Thierry Arnoux, 7-Apr-2017.) |
Ref | Expression |
---|---|
disjrdx.1 | ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) |
disjrdx.2 | ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
disjrdx | ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjrdx.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐴–1-1-onto→𝐶) | |
2 | f1of 6742 | . . . . . . 7 ⊢ (𝐹:𝐴–1-1-onto→𝐶 → 𝐹:𝐴⟶𝐶) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
4 | 3 | ffvelcdmda 6989 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐶) |
5 | f1ofveu 7298 | . . . . . . 7 ⊢ ((𝐹:𝐴–1-1-onto→𝐶 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) | |
6 | 1, 5 | sylan 581 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
7 | eqcom 2743 | . . . . . . 7 ⊢ ((𝐹‘𝑥) = 𝑦 ↔ 𝑦 = (𝐹‘𝑥)) | |
8 | 7 | reubii 3337 | . . . . . 6 ⊢ (∃!𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 ↔ ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
9 | 6, 8 | sylib 217 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → ∃!𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)) |
10 | disjrdx.2 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → 𝐷 = 𝐵) | |
11 | 10 | eleq2d 2822 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 = (𝐹‘𝑥)) → (𝑧 ∈ 𝐷 ↔ 𝑧 ∈ 𝐵)) |
12 | 4, 9, 11 | rmoxfrd 30882 | . . . 4 ⊢ (𝜑 → (∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷 ↔ ∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) |
13 | 12 | bicomd 222 | . . 3 ⊢ (𝜑 → (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
14 | 13 | albidv 1921 | . 2 ⊢ (𝜑 → (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷)) |
15 | df-disj 5047 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
16 | df-disj 5047 | . 2 ⊢ (Disj 𝑦 ∈ 𝐶 𝐷 ↔ ∀𝑧∃*𝑦 ∈ 𝐶 𝑧 ∈ 𝐷) | |
17 | 14, 15, 16 | 3bitr4g 315 | 1 ⊢ (𝜑 → (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐶 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 = wceq 1539 ∈ wcel 2104 ∃!wreu 3282 ∃*wrmo 3283 Disj wdisj 5046 ⟶wf 6450 –1-1-onto→wf1o 6453 ‘cfv 6454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-disj 5047 df-br 5082 df-opab 5144 df-id 5496 df-xp 5602 df-rel 5603 df-cnv 5604 df-co 5605 df-dm 5606 df-rn 5607 df-res 5608 df-ima 5609 df-iota 6406 df-fun 6456 df-fn 6457 df-f 6458 df-f1 6459 df-fo 6460 df-f1o 6461 df-fv 6462 |
This theorem is referenced by: tocyccntz 31452 volmeas 32240 carsggect 32326 |
Copyright terms: Public domain | W3C validator |