| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvdisjf | Structured version Visualization version GIF version | ||
| Description: Change bound variables in a disjoint collection. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
| Ref | Expression |
|---|---|
| cbvdisjf.1 | ⊢ Ⅎ𝑥𝐴 |
| cbvdisjf.2 | ⊢ Ⅎ𝑦𝐵 |
| cbvdisjf.3 | ⊢ Ⅎ𝑥𝐶 |
| cbvdisjf.4 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvdisjf | ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 | |
| 2 | cbvdisjf.2 | . . . . . . 7 ⊢ Ⅎ𝑦𝐵 | |
| 3 | 2 | nfcri 2886 | . . . . . 6 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 4 | 1, 3 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) |
| 5 | cbvdisjf.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 6 | 5 | nfcri 2886 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 7 | cbvdisjf.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝐶 | |
| 8 | 7 | nfcri 2886 | . . . . . 6 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 9 | 6, 8 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶) |
| 10 | eleq1w 2814 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 11 | cbvdisjf.4 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 12 | 11 | eleq2d 2817 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 13 | 10, 12 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶))) |
| 14 | 4, 9, 13 | cbvmow 2598 | . . . 4 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵) ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶)) |
| 15 | df-rmo 3346 | . . . 4 ⊢ (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐵)) | |
| 16 | df-rmo 3346 | . . . 4 ⊢ (∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶)) | |
| 17 | 14, 15, 16 | 3bitr4i 303 | . . 3 ⊢ (∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 18 | 17 | albii 1820 | . 2 ⊢ (∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 19 | df-disj 5057 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑧∃*𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) | |
| 20 | df-disj 5057 | . 2 ⊢ (Disj 𝑦 ∈ 𝐴 𝐶 ↔ ∀𝑧∃*𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) | |
| 21 | 18, 19, 20 | 3bitr4i 303 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ Disj 𝑦 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 ∃*wmo 2533 Ⅎwnfc 2879 ∃*wrmo 3345 Disj wdisj 5056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rmo 3346 df-disj 5057 |
| This theorem is referenced by: disjorsf 32560 ldgenpisyslem1 34176 |
| Copyright terms: Public domain | W3C validator |