Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncossdmcoss Structured version   Visualization version   GIF version

Theorem rncossdmcoss 36310
Description: The range of cosets is the domain of them (this should be rncoss 5841 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.)
Assertion
Ref Expression
rncossdmcoss ran ≀ 𝑅 = dom ≀ 𝑅

Proof of Theorem rncossdmcoss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 36294 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
21el2v 3416 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
32exbii 1855 . . 3 (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑥𝑅𝑦)
43abbii 2808 . 2 {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
5 dfrn2 5757 . 2 ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥}
6 df-dm 5561 . 2 dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
74, 5, 63eqtr4i 2775 1 ran ≀ 𝑅 = dom ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 209   = wceq 1543  wex 1787  {cab 2714  Vcvv 3408   class class class wbr 5053  dom cdm 5551  ran crn 5552  ccoss 36070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-cnv 5559  df-dm 5561  df-rn 5562  df-coss 36274
This theorem is referenced by:  refrelcoss3  36318
  Copyright terms: Public domain W3C validator