| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rncossdmcoss | Structured version Visualization version GIF version | ||
| Description: The range of cosets is the domain of them (this should be rncoss 5920 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
| Ref | Expression |
|---|---|
| rncossdmcoss | ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcosscnvcoss 38556 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦)) | |
| 2 | 1 | el2v 3444 | . . . 4 ⊢ (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦) |
| 3 | 2 | exbii 1849 | . . 3 ⊢ (∃𝑦 𝑦 ≀ 𝑅𝑥 ↔ ∃𝑦 𝑥 ≀ 𝑅𝑦) |
| 4 | 3 | abbii 2800 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 ≀ 𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥 ≀ 𝑅𝑦} |
| 5 | dfrn2 5832 | . 2 ⊢ ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦 ≀ 𝑅𝑥} | |
| 6 | df-dm 5629 | . 2 ⊢ dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥 ≀ 𝑅𝑦} | |
| 7 | 4, 5, 6 | 3eqtr4i 2766 | 1 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 {cab 2711 Vcvv 3437 class class class wbr 5093 dom cdm 5619 ran crn 5620 ≀ ccoss 38242 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-cnv 5627 df-dm 5629 df-rn 5630 df-coss 38533 |
| This theorem is referenced by: refrelcoss3 38585 |
| Copyright terms: Public domain | W3C validator |