Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncossdmcoss Structured version   Visualization version   GIF version

Theorem rncossdmcoss 37320
Description: The range of cosets is the domain of them (this should be rncoss 5971 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.)
Assertion
Ref Expression
rncossdmcoss ran ≀ 𝑅 = dom ≀ 𝑅

Proof of Theorem rncossdmcoss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 37299 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
21el2v 3482 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
32exbii 1850 . . 3 (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑥𝑅𝑦)
43abbii 2802 . 2 {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
5 dfrn2 5888 . 2 ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥}
6 df-dm 5686 . 2 dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
74, 5, 63eqtr4i 2770 1 ran ≀ 𝑅 = dom ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wex 1781  {cab 2709  Vcvv 3474   class class class wbr 5148  dom cdm 5676  ran crn 5677  ccoss 37038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-cnv 5684  df-dm 5686  df-rn 5687  df-coss 37276
This theorem is referenced by:  refrelcoss3  37328
  Copyright terms: Public domain W3C validator