![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncossdmcoss | Structured version Visualization version GIF version |
Description: The range of cosets is the domain of them (this should be rncoss 5998 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
Ref | Expression |
---|---|
rncossdmcoss | ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss 38390 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦)) | |
2 | 1 | el2v 3495 | . . . 4 ⊢ (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦) |
3 | 2 | exbii 1846 | . . 3 ⊢ (∃𝑦 𝑦 ≀ 𝑅𝑥 ↔ ∃𝑦 𝑥 ≀ 𝑅𝑦) |
4 | 3 | abbii 2812 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 ≀ 𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥 ≀ 𝑅𝑦} |
5 | dfrn2 5913 | . 2 ⊢ ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦 ≀ 𝑅𝑥} | |
6 | df-dm 5710 | . 2 ⊢ dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥 ≀ 𝑅𝑦} | |
7 | 4, 5, 6 | 3eqtr4i 2778 | 1 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∃wex 1777 {cab 2717 Vcvv 3488 class class class wbr 5166 dom cdm 5700 ran crn 5701 ≀ ccoss 38135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 df-coss 38367 |
This theorem is referenced by: refrelcoss3 38419 |
Copyright terms: Public domain | W3C validator |