Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncossdmcoss Structured version   Visualization version   GIF version

Theorem rncossdmcoss 38453
Description: The range of cosets is the domain of them (this should be rncoss 5942 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.)
Assertion
Ref Expression
rncossdmcoss ran ≀ 𝑅 = dom ≀ 𝑅

Proof of Theorem rncossdmcoss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 38432 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
21el2v 3457 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
32exbii 1848 . . 3 (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑥𝑅𝑦)
43abbii 2797 . 2 {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
5 dfrn2 5855 . 2 ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥}
6 df-dm 5651 . 2 dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
74, 5, 63eqtr4i 2763 1 ran ≀ 𝑅 = dom ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wex 1779  {cab 2708  Vcvv 3450   class class class wbr 5110  dom cdm 5641  ran crn 5642  ccoss 38176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649  df-dm 5651  df-rn 5652  df-coss 38409
This theorem is referenced by:  refrelcoss3  38461
  Copyright terms: Public domain W3C validator