Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rncossdmcoss Structured version   Visualization version   GIF version

Theorem rncossdmcoss 36573
Description: The range of cosets is the domain of them (this should be rncoss 5881 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.)
Assertion
Ref Expression
rncossdmcoss ran ≀ 𝑅 = dom ≀ 𝑅

Proof of Theorem rncossdmcoss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brcosscnvcoss 36557 . . . . 5 ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦𝑅𝑥𝑥𝑅𝑦))
21el2v 3440 . . . 4 (𝑦𝑅𝑥𝑥𝑅𝑦)
32exbii 1850 . . 3 (∃𝑦 𝑦𝑅𝑥 ↔ ∃𝑦 𝑥𝑅𝑦)
43abbii 2808 . 2 {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
5 dfrn2 5797 . 2 ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦𝑅𝑥}
6 df-dm 5599 . 2 dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
74, 5, 63eqtr4i 2776 1 ran ≀ 𝑅 = dom ≀ 𝑅
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1782  {cab 2715  Vcvv 3432   class class class wbr 5074  dom cdm 5589  ran crn 5590  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-dm 5599  df-rn 5600  df-coss 36537
This theorem is referenced by:  refrelcoss3  36581
  Copyright terms: Public domain W3C validator