Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rncossdmcoss | Structured version Visualization version GIF version |
Description: The range of cosets is the domain of them (this should be rncoss 5870 but there exists a theorem with this name already). (Contributed by Peter Mazsa, 12-Dec-2019.) |
Ref | Expression |
---|---|
rncossdmcoss | ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcosscnvcoss 36484 | . . . . 5 ⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V) → (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦)) | |
2 | 1 | el2v 3430 | . . . 4 ⊢ (𝑦 ≀ 𝑅𝑥 ↔ 𝑥 ≀ 𝑅𝑦) |
3 | 2 | exbii 1851 | . . 3 ⊢ (∃𝑦 𝑦 ≀ 𝑅𝑥 ↔ ∃𝑦 𝑥 ≀ 𝑅𝑦) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦 ≀ 𝑅𝑥} = {𝑥 ∣ ∃𝑦 𝑥 ≀ 𝑅𝑦} |
5 | dfrn2 5786 | . 2 ⊢ ran ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑦 ≀ 𝑅𝑥} | |
6 | df-dm 5590 | . 2 ⊢ dom ≀ 𝑅 = {𝑥 ∣ ∃𝑦 𝑥 ≀ 𝑅𝑦} | |
7 | 4, 5, 6 | 3eqtr4i 2776 | 1 ⊢ ran ≀ 𝑅 = dom ≀ 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1783 {cab 2715 Vcvv 3422 class class class wbr 5070 dom cdm 5580 ran crn 5581 ≀ ccoss 36260 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-coss 36464 |
This theorem is referenced by: refrelcoss3 36508 |
Copyright terms: Public domain | W3C validator |