![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5687 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
2 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
5 | 2, 3, 4 | nfbr 5196 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
6 | 5 | nfex 2318 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
7 | 6 | nfab 2910 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
8 | 1, 7 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 {cab 2710 Ⅎwnfc 2884 class class class wbr 5149 dom cdm 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-dm 5687 |
This theorem is referenced by: nfrn 5952 dmiin 5953 nffn 6649 nosupbnd2 27219 noinfbnd2 27234 funimass4f 31861 bnj1398 34045 bnj1491 34068 fnlimcnv 44383 fnlimfvre 44390 fnlimabslt 44395 lmbr3 44463 itgsinexplem1 44670 fourierdlem16 44839 fourierdlem21 44844 fourierdlem22 44845 fourierdlem68 44890 fourierdlem80 44902 fourierdlem103 44925 fourierdlem104 44926 issmff 45450 issmfdf 45453 smfpimltmpt 45462 smfpimltxr 45463 smfpimltxrmptf 45474 smfpreimagtf 45484 smflim 45493 smfpimgtxr 45496 smfpimgtmpt 45497 smfpimgtxrmptf 45500 smflim2 45522 smfpimcc 45524 smfsup 45530 smfsupmpt 45531 smfsupxr 45532 smfinflem 45533 smfinf 45534 smfinfmpt 45535 smflimsup 45544 smfliminf 45547 adddmmbl2 45550 muldmmbl2 45552 smfpimne2 45556 smfdivdmmbl2 45557 fsupdm 45558 finfdm 45562 nfdfat 45835 |
Copyright terms: Public domain | W3C validator |