MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdm Structured version   Visualization version   GIF version

Theorem nfdm 5918
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1 𝑥𝐴
Assertion
Ref Expression
nfdm 𝑥dom 𝐴

Proof of Theorem nfdm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5651 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
2 nfcv 2892 . . . . 5 𝑥𝑦
3 nfrn.1 . . . . 5 𝑥𝐴
4 nfcv 2892 . . . . 5 𝑥𝑧
52, 3, 4nfbr 5157 . . . 4 𝑥 𝑦𝐴𝑧
65nfex 2323 . . 3 𝑥𝑧 𝑦𝐴𝑧
76nfab 2898 . 2 𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
81, 7nfcxfr 2890 1 𝑥dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  wex 1779  {cab 2708  wnfc 2877   class class class wbr 5110  dom cdm 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-dm 5651
This theorem is referenced by:  nfrn  5919  dmiin  5920  nffn  6620  nosupbnd2  27635  noinfbnd2  27650  funimass4f  32568  bnj1398  35031  bnj1491  35054  fnlimcnv  45672  fnlimfvre  45679  fnlimabslt  45684  lmbr3  45752  itgsinexplem1  45959  fourierdlem16  46128  fourierdlem21  46133  fourierdlem22  46134  fourierdlem68  46179  fourierdlem80  46191  fourierdlem103  46214  fourierdlem104  46215  issmff  46739  issmfdf  46742  smfpimltmpt  46751  smfpimltxr  46752  smfpimltxrmptf  46763  smfpreimagtf  46773  smflim  46782  smfpimgtxr  46785  smfpimgtmpt  46786  smfpimgtxrmptf  46789  smflim2  46811  smfpimcc  46813  smfsup  46819  smfsupmpt  46820  smfsupxr  46821  smfinflem  46822  smfinf  46823  smflimsup  46833  smfliminf  46836  adddmmbl2  46839  muldmmbl2  46841  smfpimne2  46845  smfdivdmmbl2  46846  fsupdm  46847  finfdm  46851  nfdfat  47132
  Copyright terms: Public domain W3C validator