MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdm Structured version   Visualization version   GIF version

Theorem nfdm 5849
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrn.1 𝑥𝐴
Assertion
Ref Expression
nfdm 𝑥dom 𝐴

Proof of Theorem nfdm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5590 . 2 dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
2 nfcv 2906 . . . . 5 𝑥𝑦
3 nfrn.1 . . . . 5 𝑥𝐴
4 nfcv 2906 . . . . 5 𝑥𝑧
52, 3, 4nfbr 5117 . . . 4 𝑥 𝑦𝐴𝑧
65nfex 2322 . . 3 𝑥𝑧 𝑦𝐴𝑧
76nfab 2912 . 2 𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧}
81, 7nfcxfr 2904 1 𝑥dom 𝐴
Colors of variables: wff setvar class
Syntax hints:  wex 1783  {cab 2715  wnfc 2886   class class class wbr 5070  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-dm 5590
This theorem is referenced by:  nfrn  5850  dmiin  5851  nffn  6516  funimass4f  30873  bnj1398  32914  bnj1491  32937  nosupbnd2  33846  noinfbnd2  33861  fnlimcnv  43098  fnlimfvre  43105  fnlimabslt  43110  lmbr3  43178  itgsinexplem1  43385  fourierdlem16  43554  fourierdlem21  43559  fourierdlem22  43560  fourierdlem68  43605  fourierdlem80  43617  fourierdlem103  43640  fourierdlem104  43641  issmff  44157  issmfdf  44160  smfpimltmpt  44169  smfpimltxrmpt  44181  smfpreimagtf  44190  smflim  44199  smfpimgtxr  44202  smfpimgtmpt  44203  smfpimgtxrmpt  44206  smflim2  44226  smfpimcc  44228  smfsup  44234  smfsupmpt  44235  smfsupxr  44236  smfinflem  44237  smfinf  44238  smfinfmpt  44239  smflimsup  44248  smfliminf  44251  nfdfat  44506
  Copyright terms: Public domain W3C validator