Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5599 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
2 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2907 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
5 | 2, 3, 4 | nfbr 5121 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
6 | 5 | nfex 2318 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
7 | 6 | nfab 2913 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
8 | 1, 7 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 {cab 2715 Ⅎwnfc 2887 class class class wbr 5074 dom cdm 5589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-dm 5599 |
This theorem is referenced by: nfrn 5861 dmiin 5862 nffn 6532 funimass4f 30972 bnj1398 33014 bnj1491 33037 nosupbnd2 33919 noinfbnd2 33934 fnlimcnv 43208 fnlimfvre 43215 fnlimabslt 43220 lmbr3 43288 itgsinexplem1 43495 fourierdlem16 43664 fourierdlem21 43669 fourierdlem22 43670 fourierdlem68 43715 fourierdlem80 43727 fourierdlem103 43750 fourierdlem104 43751 issmff 44270 issmfdf 44273 smfpimltmpt 44282 smfpimltxr 44283 smfpimltxrmpt 44294 smfpreimagtf 44303 smflim 44312 smfpimgtxr 44315 smfpimgtmpt 44316 smfpimgtxrmpt 44319 smflim2 44339 smfpimcc 44341 smfsup 44347 smfsupmpt 44348 smfsupxr 44349 smfinflem 44350 smfinf 44351 smfinfmpt 44352 smflimsup 44361 smfliminf 44364 nfdfat 44619 |
Copyright terms: Public domain | W3C validator |