| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5629 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 5 | 2, 3, 4 | nfbr 5139 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
| 6 | 5 | nfex 2323 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
| 7 | 6 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 {cab 2707 Ⅎwnfc 2876 class class class wbr 5092 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: nfrn 5894 dmiin 5895 nffn 6581 nosupbnd2 27626 noinfbnd2 27641 funimass4f 32580 bnj1398 35001 bnj1491 35024 fnlimcnv 45652 fnlimfvre 45659 fnlimabslt 45664 lmbr3 45732 itgsinexplem1 45939 fourierdlem16 46108 fourierdlem21 46113 fourierdlem22 46114 fourierdlem68 46159 fourierdlem80 46171 fourierdlem103 46194 fourierdlem104 46195 issmff 46719 issmfdf 46722 smfpimltmpt 46731 smfpimltxr 46732 smfpimltxrmptf 46743 smfpreimagtf 46753 smflim 46762 smfpimgtxr 46765 smfpimgtmpt 46766 smfpimgtxrmptf 46769 smflim2 46791 smfpimcc 46793 smfsup 46799 smfsupmpt 46800 smfsupxr 46801 smfinflem 46802 smfinf 46803 smflimsup 46813 smfliminf 46816 adddmmbl2 46819 muldmmbl2 46821 smfpimne2 46825 smfdivdmmbl2 46826 fsupdm 46827 finfdm 46831 nfdfat 47115 |
| Copyright terms: Public domain | W3C validator |