![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5699 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
2 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
5 | 2, 3, 4 | nfbr 5195 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
6 | 5 | nfex 2323 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
7 | 6 | nfab 2909 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
8 | 1, 7 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1776 {cab 2712 Ⅎwnfc 2888 class class class wbr 5148 dom cdm 5689 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-dm 5699 |
This theorem is referenced by: nfrn 5966 dmiin 5967 nffn 6668 nosupbnd2 27776 noinfbnd2 27791 funimass4f 32654 bnj1398 35027 bnj1491 35050 fnlimcnv 45623 fnlimfvre 45630 fnlimabslt 45635 lmbr3 45703 itgsinexplem1 45910 fourierdlem16 46079 fourierdlem21 46084 fourierdlem22 46085 fourierdlem68 46130 fourierdlem80 46142 fourierdlem103 46165 fourierdlem104 46166 issmff 46690 issmfdf 46693 smfpimltmpt 46702 smfpimltxr 46703 smfpimltxrmptf 46714 smfpreimagtf 46724 smflim 46733 smfpimgtxr 46736 smfpimgtmpt 46737 smfpimgtxrmptf 46740 smflim2 46762 smfpimcc 46764 smfsup 46770 smfsupmpt 46771 smfsupxr 46772 smfinflem 46773 smfinf 46774 smflimsup 46784 smfliminf 46787 adddmmbl2 46790 muldmmbl2 46792 smfpimne2 46796 smfdivdmmbl2 46797 fsupdm 46798 finfdm 46802 nfdfat 47077 |
Copyright terms: Public domain | W3C validator |