| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5624 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
| 2 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2894 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 5 | 2, 3, 4 | nfbr 5136 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
| 6 | 5 | nfex 2325 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
| 7 | 6 | nfab 2900 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
| 8 | 1, 7 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1780 {cab 2709 Ⅎwnfc 2879 class class class wbr 5089 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: nfrn 5891 dmiin 5892 nffn 6580 nosupbnd2 27655 noinfbnd2 27670 funimass4f 32619 bnj1398 35046 bnj1491 35069 fnlimcnv 45775 fnlimfvre 45782 fnlimabslt 45787 lmbr3 45855 itgsinexplem1 46062 fourierdlem16 46231 fourierdlem21 46236 fourierdlem22 46237 fourierdlem68 46282 fourierdlem80 46294 fourierdlem103 46317 fourierdlem104 46318 issmff 46842 issmfdf 46845 smfpimltmpt 46854 smfpimltxr 46855 smfpimltxrmptf 46866 smfpreimagtf 46876 smflim 46885 smfpimgtxr 46888 smfpimgtmpt 46889 smfpimgtxrmptf 46892 smflim2 46914 smfpimcc 46916 smfsup 46922 smfsupmpt 46923 smfsupxr 46924 smfinflem 46925 smfinf 46926 smflimsup 46936 smfliminf 46939 adddmmbl2 46942 muldmmbl2 46944 smfpimne2 46948 smfdivdmmbl2 46949 fsupdm 46950 finfdm 46954 nfdfat 47237 |
| Copyright terms: Public domain | W3C validator |