| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5651 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
| 2 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 5 | 2, 3, 4 | nfbr 5157 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
| 6 | 5 | nfex 2323 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
| 7 | 6 | nfab 2898 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
| 8 | 1, 7 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 {cab 2708 Ⅎwnfc 2877 class class class wbr 5110 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-dm 5651 |
| This theorem is referenced by: nfrn 5919 dmiin 5920 nffn 6620 nosupbnd2 27635 noinfbnd2 27650 funimass4f 32568 bnj1398 35031 bnj1491 35054 fnlimcnv 45672 fnlimfvre 45679 fnlimabslt 45684 lmbr3 45752 itgsinexplem1 45959 fourierdlem16 46128 fourierdlem21 46133 fourierdlem22 46134 fourierdlem68 46179 fourierdlem80 46191 fourierdlem103 46214 fourierdlem104 46215 issmff 46739 issmfdf 46742 smfpimltmpt 46751 smfpimltxr 46752 smfpimltxrmptf 46763 smfpreimagtf 46773 smflim 46782 smfpimgtxr 46785 smfpimgtmpt 46786 smfpimgtxrmptf 46789 smflim2 46811 smfpimcc 46813 smfsup 46819 smfsupmpt 46820 smfsupxr 46821 smfinflem 46822 smfinf 46823 smflimsup 46833 smfliminf 46836 adddmmbl2 46839 muldmmbl2 46841 smfpimne2 46845 smfdivdmmbl2 46846 fsupdm 46847 finfdm 46851 nfdfat 47132 |
| Copyright terms: Public domain | W3C validator |