Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5590 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
2 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
5 | 2, 3, 4 | nfbr 5117 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
6 | 5 | nfex 2322 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
7 | 6 | nfab 2912 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
8 | 1, 7 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1783 {cab 2715 Ⅎwnfc 2886 class class class wbr 5070 dom cdm 5580 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-dm 5590 |
This theorem is referenced by: nfrn 5850 dmiin 5851 nffn 6516 funimass4f 30873 bnj1398 32914 bnj1491 32937 nosupbnd2 33846 noinfbnd2 33861 fnlimcnv 43098 fnlimfvre 43105 fnlimabslt 43110 lmbr3 43178 itgsinexplem1 43385 fourierdlem16 43554 fourierdlem21 43559 fourierdlem22 43560 fourierdlem68 43605 fourierdlem80 43617 fourierdlem103 43640 fourierdlem104 43641 issmff 44157 issmfdf 44160 smfpimltmpt 44169 smfpimltxrmpt 44181 smfpreimagtf 44190 smflim 44199 smfpimgtxr 44202 smfpimgtmpt 44203 smfpimgtxrmpt 44206 smflim2 44226 smfpimcc 44228 smfsup 44234 smfsupmpt 44235 smfsupxr 44236 smfinflem 44237 smfinf 44238 smfinfmpt 44239 smflimsup 44248 smfliminf 44251 nfdfat 44506 |
Copyright terms: Public domain | W3C validator |