![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5710 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
2 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
5 | 2, 3, 4 | nfbr 5213 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
6 | 5 | nfex 2328 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
7 | 6 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
8 | 1, 7 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 {cab 2717 Ⅎwnfc 2893 class class class wbr 5166 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: nfrn 5977 dmiin 5978 nffn 6678 nosupbnd2 27779 noinfbnd2 27794 funimass4f 32656 bnj1398 35010 bnj1491 35033 fnlimcnv 45588 fnlimfvre 45595 fnlimabslt 45600 lmbr3 45668 itgsinexplem1 45875 fourierdlem16 46044 fourierdlem21 46049 fourierdlem22 46050 fourierdlem68 46095 fourierdlem80 46107 fourierdlem103 46130 fourierdlem104 46131 issmff 46655 issmfdf 46658 smfpimltmpt 46667 smfpimltxr 46668 smfpimltxrmptf 46679 smfpreimagtf 46689 smflim 46698 smfpimgtxr 46701 smfpimgtmpt 46702 smfpimgtxrmptf 46705 smflim2 46727 smfpimcc 46729 smfsup 46735 smfsupmpt 46736 smfsupxr 46737 smfinflem 46738 smfinf 46739 smfinfmpt 46740 smflimsup 46749 smfliminf 46752 adddmmbl2 46755 muldmmbl2 46757 smfpimne2 46761 smfdivdmmbl2 46762 fsupdm 46763 finfdm 46767 nfdfat 47042 |
Copyright terms: Public domain | W3C validator |