| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5648 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 5 | 2, 3, 4 | nfbr 5154 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
| 6 | 5 | nfex 2323 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
| 7 | 6 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 {cab 2707 Ⅎwnfc 2876 class class class wbr 5107 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-dm 5648 |
| This theorem is referenced by: nfrn 5916 dmiin 5917 nffn 6617 nosupbnd2 27628 noinfbnd2 27643 funimass4f 32561 bnj1398 35024 bnj1491 35047 fnlimcnv 45665 fnlimfvre 45672 fnlimabslt 45677 lmbr3 45745 itgsinexplem1 45952 fourierdlem16 46121 fourierdlem21 46126 fourierdlem22 46127 fourierdlem68 46172 fourierdlem80 46184 fourierdlem103 46207 fourierdlem104 46208 issmff 46732 issmfdf 46735 smfpimltmpt 46744 smfpimltxr 46745 smfpimltxrmptf 46756 smfpreimagtf 46766 smflim 46775 smfpimgtxr 46778 smfpimgtmpt 46779 smfpimgtxrmptf 46782 smflim2 46804 smfpimcc 46806 smfsup 46812 smfsupmpt 46813 smfsupxr 46814 smfinflem 46815 smfinf 46816 smflimsup 46826 smfliminf 46829 adddmmbl2 46832 muldmmbl2 46834 smfpimne2 46838 smfdivdmmbl2 46839 fsupdm 46840 finfdm 46844 nfdfat 47128 |
| Copyright terms: Public domain | W3C validator |