| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5641 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
| 2 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 5 | 2, 3, 4 | nfbr 5149 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
| 6 | 5 | nfex 2323 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
| 7 | 6 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
| 8 | 1, 7 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 {cab 2707 Ⅎwnfc 2876 class class class wbr 5102 dom cdm 5631 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-dm 5641 |
| This theorem is referenced by: nfrn 5905 dmiin 5906 nffn 6599 nosupbnd2 27661 noinfbnd2 27676 funimass4f 32611 bnj1398 35017 bnj1491 35040 fnlimcnv 45658 fnlimfvre 45665 fnlimabslt 45670 lmbr3 45738 itgsinexplem1 45945 fourierdlem16 46114 fourierdlem21 46119 fourierdlem22 46120 fourierdlem68 46165 fourierdlem80 46177 fourierdlem103 46200 fourierdlem104 46201 issmff 46725 issmfdf 46728 smfpimltmpt 46737 smfpimltxr 46738 smfpimltxrmptf 46749 smfpreimagtf 46759 smflim 46768 smfpimgtxr 46771 smfpimgtmpt 46772 smfpimgtxrmptf 46775 smflim2 46797 smfpimcc 46799 smfsup 46805 smfsupmpt 46806 smfsupxr 46807 smfinflem 46808 smfinf 46809 smflimsup 46819 smfliminf 46822 adddmmbl2 46825 muldmmbl2 46827 smfpimne2 46831 smfdivdmmbl2 46832 fsupdm 46833 finfdm 46837 nfdfat 47121 |
| Copyright terms: Public domain | W3C validator |