| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdm | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for domain. (Contributed by NM, 30-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrn.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfdm | ⊢ Ⅎ𝑥dom 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dm 5664 | . 2 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} | |
| 2 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
| 3 | nfrn.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2898 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 5 | 2, 3, 4 | nfbr 5166 | . . . 4 ⊢ Ⅎ𝑥 𝑦𝐴𝑧 |
| 6 | 5 | nfex 2324 | . . 3 ⊢ Ⅎ𝑥∃𝑧 𝑦𝐴𝑧 |
| 7 | 6 | nfab 2904 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∃𝑧 𝑦𝐴𝑧} |
| 8 | 1, 7 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥dom 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ∃wex 1779 {cab 2713 Ⅎwnfc 2883 class class class wbr 5119 dom cdm 5654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-dm 5664 |
| This theorem is referenced by: nfrn 5932 dmiin 5933 nffn 6637 nosupbnd2 27680 noinfbnd2 27695 funimass4f 32615 bnj1398 35065 bnj1491 35088 fnlimcnv 45696 fnlimfvre 45703 fnlimabslt 45708 lmbr3 45776 itgsinexplem1 45983 fourierdlem16 46152 fourierdlem21 46157 fourierdlem22 46158 fourierdlem68 46203 fourierdlem80 46215 fourierdlem103 46238 fourierdlem104 46239 issmff 46763 issmfdf 46766 smfpimltmpt 46775 smfpimltxr 46776 smfpimltxrmptf 46787 smfpreimagtf 46797 smflim 46806 smfpimgtxr 46809 smfpimgtmpt 46810 smfpimgtxrmptf 46813 smflim2 46835 smfpimcc 46837 smfsup 46843 smfsupmpt 46844 smfsupxr 46845 smfinflem 46846 smfinf 46847 smflimsup 46857 smfliminf 46860 adddmmbl2 46863 muldmmbl2 46865 smfpimne2 46869 smfdivdmmbl2 46870 fsupdm 46871 finfdm 46875 nfdfat 47156 |
| Copyright terms: Public domain | W3C validator |