Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabdm Structured version   Visualization version   GIF version

Theorem opabdm 32539
Description: Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
opabdm (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabdm
StepHypRef Expression
1 df-dm 5648 . 2 dom 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
2 nfopab1 5177 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfeq2 2909 . . 3 𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 nfopab2 5178 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfeq2 2909 . . . 4 𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 df-br 5108 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 eleq2 2817 . . . . . 6 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
8 opabidw 5484 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
97, 8bitrdi 287 . . . . 5 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝜑))
106, 9bitrid 283 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦𝜑))
115, 10exbid 2224 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑦 𝑥𝑅𝑦 ↔ ∃𝑦𝜑))
123, 11abbid 2797 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦} = {𝑥 ∣ ∃𝑦𝜑})
131, 12eqtrid 2776 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  {cab 2707  cop 4595   class class class wbr 5107  {copab 5169  dom cdm 5638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-dm 5648
This theorem is referenced by:  fpwrelmapffslem  32655
  Copyright terms: Public domain W3C validator