|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opabdm | Structured version Visualization version GIF version | ||
| Description: Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.) | 
| Ref | Expression | 
|---|---|
| opabdm | ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-dm 5694 | . 2 ⊢ dom 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦} | |
| 2 | nfopab1 5212 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 3 | 2 | nfeq2 2922 | . . 3 ⊢ Ⅎ𝑥 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| 4 | nfopab2 5213 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | 4 | nfeq2 2922 | . . . 4 ⊢ Ⅎ𝑦 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | 
| 6 | df-br 5143 | . . . . 5 ⊢ (𝑥𝑅𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝑅) | |
| 7 | eleq2 2829 | . . . . . 6 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑})) | |
| 8 | opabidw 5528 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 9 | 7, 8 | bitrdi 287 | . . . . 5 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (〈𝑥, 𝑦〉 ∈ 𝑅 ↔ 𝜑)) | 
| 10 | 6, 9 | bitrid 283 | . . . 4 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (𝑥𝑅𝑦 ↔ 𝜑)) | 
| 11 | 5, 10 | exbid 2222 | . . 3 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → (∃𝑦 𝑥𝑅𝑦 ↔ ∃𝑦𝜑)) | 
| 12 | 3, 11 | abbid 2809 | . 2 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦} = {𝑥 ∣ ∃𝑦𝜑}) | 
| 13 | 1, 12 | eqtrid 2788 | 1 ⊢ (𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 〈cop 4631 class class class wbr 5142 {copab 5204 dom cdm 5684 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-dm 5694 | 
| This theorem is referenced by: fpwrelmapffslem 32744 | 
| Copyright terms: Public domain | W3C validator |