Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabdm Structured version   Visualization version   GIF version

Theorem opabdm 30852
Description: Domain of an ordered-pair class abstraction. (Contributed by Thierry Arnoux, 31-Aug-2017.)
Assertion
Ref Expression
opabdm (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
Distinct variable group:   𝑥,𝑦,𝑅
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabdm
StepHypRef Expression
1 df-dm 5590 . 2 dom 𝑅 = {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦}
2 nfopab1 5140 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
32nfeq2 2923 . . 3 𝑥 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
4 nfopab2 5141 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
54nfeq2 2923 . . . 4 𝑦 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
6 df-br 5071 . . . . 5 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
7 eleq2 2827 . . . . . 6 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑}))
8 opabidw 5431 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
97, 8bitrdi 286 . . . . 5 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (⟨𝑥, 𝑦⟩ ∈ 𝑅𝜑))
106, 9syl5bb 282 . . . 4 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (𝑥𝑅𝑦𝜑))
115, 10exbid 2219 . . 3 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → (∃𝑦 𝑥𝑅𝑦 ↔ ∃𝑦𝜑))
123, 11abbid 2810 . 2 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → {𝑥 ∣ ∃𝑦 𝑥𝑅𝑦} = {𝑥 ∣ ∃𝑦𝜑})
131, 12syl5eq 2791 1 (𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑} → dom 𝑅 = {𝑥 ∣ ∃𝑦𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wex 1783  wcel 2108  {cab 2715  cop 4564   class class class wbr 5070  {copab 5132  dom cdm 5580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-dm 5590
This theorem is referenced by:  fpwrelmapffslem  30969
  Copyright terms: Public domain W3C validator