MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmg Structured version   Visualization version   GIF version

Theorem eldmg 5837
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5092 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝑦𝐴𝐵𝑦))
21exbidv 1922 . 2 (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦))
3 df-dm 5624 . 2 dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦}
42, 3elab2g 3631 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2111   class class class wbr 5089  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624
This theorem is referenced by:  eldm2g  5838  eldm  5839  breldmg  5848  releldmb  5885  funeu  6506  fneu  6591  ndmfv  6854  erref  8642  ecdmn0  8674  rlimdm  15458  rlimdmo1  15525  iscmet3lem2  25219  dvcnp2  25848  dvcnp2OLD  25849  ulmcau  26331  pserulm  26358  mulog2sum  27475  unbdqndv1  36552  eldmres  38308  eldmressnALTV  38310  eldm4  38312  eldmres2  38313  eldmcnv  38376  ssdmral  38402  funressneu  47146  afveu  47252  rlimdmafv  47276  funressndmafv2rn  47322  afv2eu  47337  rlimdmafv2  47357  uobrcl  49293  uobeq2  49501
  Copyright terms: Public domain W3C validator