MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmg Structured version   Visualization version   GIF version

Theorem eldmg 5899
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5152 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝑦𝐴𝐵𝑦))
21exbidv 1925 . 2 (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦))
3 df-dm 5687 . 2 dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦}
42, 3elab2g 3671 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wex 1782  wcel 2107   class class class wbr 5149  dom cdm 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-dm 5687
This theorem is referenced by:  eldm2g  5900  eldm  5901  breldmg  5910  releldmb  5946  funeu  6574  fneu  6660  ndmfv  6927  erref  8723  ecdmn0  8750  rlimdm  15495  rlimdmo1  15562  iscmet3lem2  24809  dvcnp2  25437  ulmcau  25907  pserulm  25934  mulog2sum  27040  gg-dvcnp2  35174  unbdqndv1  35384  eldmres  37138  eldmressnALTV  37140  eldm4  37142  eldmres2  37143  eldmcnv  37214  funressneu  45757  afveu  45861  rlimdmafv  45885  funressndmafv2rn  45931  afv2eu  45946  rlimdmafv2  45966
  Copyright terms: Public domain W3C validator