![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmg | Structured version Visualization version GIF version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 4932 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
2 | 1 | exbidv 1880 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
3 | df-dm 5417 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 3584 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1507 ∃wex 1742 ∈ wcel 2050 class class class wbr 4929 dom cdm 5407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-dm 5417 |
This theorem is referenced by: eldm2g 5618 eldm 5619 breldmg 5628 releldmb 5659 funeu 6213 fneu 6294 ndmfv 6529 erref 8109 ecdmn0 8136 rlimdm 14769 rlimdmo1 14835 iscmet3lem2 23598 dvcnp2 24220 ulmcau 24686 pserulm 24713 mulog2sum 25815 unbdqndv1 33373 eldmres 34980 eldm4 34981 eldmres2 34982 eldmcnv 35054 funressneu 42694 afveu 42764 rlimdmafv 42788 funressndmafv2rn 42834 afv2eu 42849 rlimdmafv2 42869 |
Copyright terms: Public domain | W3C validator |