| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmg | Structured version Visualization version GIF version | ||
| Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5127 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| 3 | df-dm 5669 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
| 4 | 2, 3 | elab2g 3664 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5124 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-dm 5669 |
| This theorem is referenced by: eldm2g 5884 eldm 5885 breldmg 5894 releldmb 5931 funeu 6566 fneu 6653 ndmfv 6916 erref 8744 ecdmn0 8773 rlimdm 15572 rlimdmo1 15639 iscmet3lem2 25249 dvcnp2 25878 dvcnp2OLD 25879 ulmcau 26361 pserulm 26388 mulog2sum 27505 unbdqndv1 36531 eldmres 38293 eldmressnALTV 38295 eldm4 38297 eldmres2 38298 eldmcnv 38368 funressneu 47043 afveu 47149 rlimdmafv 47173 funressndmafv2rn 47219 afv2eu 47234 rlimdmafv2 47254 |
| Copyright terms: Public domain | W3C validator |