| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmg | Structured version Visualization version GIF version | ||
| Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5095 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
| 2 | 1 | exbidv 1921 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| 3 | df-dm 5629 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
| 4 | 2, 3 | elab2g 3636 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 class class class wbr 5092 dom cdm 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-dm 5629 |
| This theorem is referenced by: eldm2g 5842 eldm 5843 breldmg 5852 releldmb 5888 funeu 6507 fneu 6592 ndmfv 6855 erref 8645 ecdmn0 8677 rlimdm 15458 rlimdmo1 15525 iscmet3lem2 25190 dvcnp2 25819 dvcnp2OLD 25820 ulmcau 26302 pserulm 26329 mulog2sum 27446 unbdqndv1 36502 eldmres 38265 eldmressnALTV 38267 eldm4 38269 eldmres2 38270 eldmcnv 38333 funressneu 47051 afveu 47157 rlimdmafv 47181 funressndmafv2rn 47227 afv2eu 47242 rlimdmafv2 47262 uobrcl 49198 uobeq2 49406 |
| Copyright terms: Public domain | W3C validator |