MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldmg Structured version   Visualization version   GIF version

Theorem eldmg 5890
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.)
Assertion
Ref Expression
eldmg (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmg
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 breq1 5144 . . 3 (𝑥 = 𝐴 → (𝑥𝐵𝑦𝐴𝐵𝑦))
21exbidv 1924 . 2 (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦))
3 df-dm 5679 . 2 dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦}
42, 3elab2g 3666 1 (𝐴𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wex 1781  wcel 2106   class class class wbr 5141  dom cdm 5669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-br 5142  df-dm 5679
This theorem is referenced by:  eldm2g  5891  eldm  5892  breldmg  5901  releldmb  5937  funeu  6562  fneu  6648  ndmfv  6913  erref  8706  ecdmn0  8733  rlimdm  15477  rlimdmo1  15544  iscmet3lem2  24738  dvcnp2  25366  ulmcau  25836  pserulm  25863  mulog2sum  26967  unbdqndv1  35186  eldmres  36941  eldmressnALTV  36943  eldm4  36945  eldmres2  36946  eldmcnv  37017  funressneu  45527  afveu  45631  rlimdmafv  45655  funressndmafv2rn  45701  afv2eu  45716  rlimdmafv2  45736
  Copyright terms: Public domain W3C validator