![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eldmg | Structured version Visualization version GIF version |
Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 5169 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
2 | 1 | exbidv 1920 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
3 | df-dm 5710 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
4 | 2, 3 | elab2g 3696 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1777 ∈ wcel 2108 class class class wbr 5166 dom cdm 5700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-dm 5710 |
This theorem is referenced by: eldm2g 5924 eldm 5925 breldmg 5934 releldmb 5971 funeu 6603 fneu 6689 ndmfv 6955 erref 8783 ecdmn0 8812 rlimdm 15597 rlimdmo1 15664 iscmet3lem2 25345 dvcnp2 25975 dvcnp2OLD 25976 ulmcau 26456 pserulm 26483 mulog2sum 27599 unbdqndv1 36474 eldmres 38226 eldmressnALTV 38228 eldm4 38230 eldmres2 38231 eldmcnv 38301 funressneu 46962 afveu 47068 rlimdmafv 47092 funressndmafv2rn 47138 afv2eu 47153 rlimdmafv2 47173 |
Copyright terms: Public domain | W3C validator |