| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eldmg | Structured version Visualization version GIF version | ||
| Description: Domain membership. Theorem 4 of [Suppes] p. 59. (Contributed by Mario Carneiro, 9-Jul-2014.) |
| Ref | Expression |
|---|---|
| eldmg | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5092 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥𝐵𝑦 ↔ 𝐴𝐵𝑦)) | |
| 2 | 1 | exbidv 1922 | . 2 ⊢ (𝑥 = 𝐴 → (∃𝑦 𝑥𝐵𝑦 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| 3 | df-dm 5624 | . 2 ⊢ dom 𝐵 = {𝑥 ∣ ∃𝑦 𝑥𝐵𝑦} | |
| 4 | 2, 3 | elab2g 3631 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐵 ↔ ∃𝑦 𝐴𝐵𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 class class class wbr 5089 dom cdm 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-dm 5624 |
| This theorem is referenced by: eldm2g 5838 eldm 5839 breldmg 5848 releldmb 5885 funeu 6506 fneu 6591 ndmfv 6854 erref 8642 ecdmn0 8674 rlimdm 15458 rlimdmo1 15525 iscmet3lem2 25219 dvcnp2 25848 dvcnp2OLD 25849 ulmcau 26331 pserulm 26358 mulog2sum 27475 unbdqndv1 36552 eldmres 38308 eldmressnALTV 38310 eldm4 38312 eldmres2 38313 eldmcnv 38376 ssdmral 38402 funressneu 47146 afveu 47252 rlimdmafv 47276 funressndmafv2rn 47322 afv2eu 47337 rlimdmafv2 47357 uobrcl 49293 uobeq2 49501 |
| Copyright terms: Public domain | W3C validator |