| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatco | Structured version Visualization version GIF version | ||
| Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatco | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfatcolem 47240 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
| 2 | euex 2575 | . . . 4 ⊢ (∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦 → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) |
| 4 | df-dm 5675 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} | |
| 5 | 4 | eleq2i 2825 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦}) |
| 6 | df-dfat 47104 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋}))) | |
| 7 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺) |
| 9 | breq1 5126 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
| 10 | 9 | exbidv 1920 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 11 | 10 | elabg 3659 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 12 | 8, 11 | syl 17 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 13 | 5, 12 | bitrid 283 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 14 | 3, 13 | mpbird 257 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹 ∘ 𝐺)) |
| 15 | dfdfat2 47113 | . 2 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
| 16 | 14, 1, 15 | sylanbrc 583 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 {cab 2712 {csn 4606 class class class wbr 5123 dom cdm 5665 ↾ cres 5667 ∘ ccom 5669 Fun wfun 6535 defAt wdfat 47101 ''''cafv2 47193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fn 6544 df-dfat 47104 df-afv2 47194 |
| This theorem is referenced by: afv2co2 47242 |
| Copyright terms: Public domain | W3C validator |