![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatco | Structured version Visualization version GIF version |
Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
Ref | Expression |
---|---|
dfatco | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatcolem 47170 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
2 | euex 2580 | . . . 4 ⊢ (∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦 → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) |
4 | df-dm 5710 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} | |
5 | 4 | eleq2i 2836 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦}) |
6 | df-dfat 47034 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋}))) | |
7 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺) |
9 | breq1 5169 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
10 | 9 | exbidv 1920 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
11 | 10 | elabg 3690 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
12 | 8, 11 | syl 17 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
13 | 5, 12 | bitrid 283 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
14 | 3, 13 | mpbird 257 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹 ∘ 𝐺)) |
15 | dfdfat2 47043 | . 2 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
16 | 14, 1, 15 | sylanbrc 582 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃!weu 2571 {cab 2717 {csn 4648 class class class wbr 5166 dom cdm 5700 ↾ cres 5702 ∘ ccom 5704 Fun wfun 6567 defAt wdfat 47031 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fn 6576 df-dfat 47034 df-afv2 47124 |
This theorem is referenced by: afv2co2 47172 |
Copyright terms: Public domain | W3C validator |