Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatco Structured version   Visualization version   GIF version

Theorem dfatco 47268
Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.)
Assertion
Ref Expression
dfatco ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)

Proof of Theorem dfatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatcolem 47267 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹𝐺)𝑦)
2 euex 2577 . . . 4 (∃!𝑦 𝑋(𝐹𝐺)𝑦 → ∃𝑦 𝑋(𝐹𝐺)𝑦)
31, 2syl 17 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹𝐺)𝑦)
4 df-dm 5695 . . . . 5 dom (𝐹𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦}
54eleq2i 2833 . . . 4 (𝑋 ∈ dom (𝐹𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦})
6 df-dfat 47131 . . . . . . 7 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
76simplbi 497 . . . . . 6 (𝐺 defAt 𝑋𝑋 ∈ dom 𝐺)
87adantr 480 . . . . 5 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺)
9 breq1 5146 . . . . . . 7 (𝑥 = 𝑋 → (𝑥(𝐹𝐺)𝑦𝑋(𝐹𝐺)𝑦))
109exbidv 1921 . . . . . 6 (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
1110elabg 3676 . . . . 5 (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
128, 11syl 17 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
135, 12bitrid 283 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
143, 13mpbird 257 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹𝐺))
15 dfdfat2 47140 . 2 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ ∃!𝑦 𝑋(𝐹𝐺)𝑦))
1614, 1, 15sylanbrc 583 1 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  ∃!weu 2568  {cab 2714  {csn 4626   class class class wbr 5143  dom cdm 5685  cres 5687  ccom 5689  Fun wfun 6555   defAt wdfat 47128  ''''cafv2 47220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-res 5697  df-iota 6514  df-fun 6563  df-fn 6564  df-dfat 47131  df-afv2 47221
This theorem is referenced by:  afv2co2  47269
  Copyright terms: Public domain W3C validator