| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatco | Structured version Visualization version GIF version | ||
| Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatco | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfatcolem 47379 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
| 2 | euex 2574 | . . . 4 ⊢ (∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦 → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) |
| 4 | df-dm 5629 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} | |
| 5 | 4 | eleq2i 2825 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦}) |
| 6 | df-dfat 47243 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋}))) | |
| 7 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺) |
| 9 | breq1 5096 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
| 10 | 9 | exbidv 1922 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 11 | 10 | elabg 3628 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 12 | 8, 11 | syl 17 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 13 | 5, 12 | bitrid 283 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 14 | 3, 13 | mpbird 257 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹 ∘ 𝐺)) |
| 15 | dfdfat2 47252 | . 2 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
| 16 | 14, 1, 15 | sylanbrc 583 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃!weu 2565 {cab 2711 {csn 4575 class class class wbr 5093 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 Fun wfun 6480 defAt wdfat 47240 ''''cafv2 47332 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-iota 6442 df-fun 6488 df-fn 6489 df-dfat 47243 df-afv2 47333 |
| This theorem is referenced by: afv2co2 47381 |
| Copyright terms: Public domain | W3C validator |