Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatco Structured version   Visualization version   GIF version

Theorem dfatco 45964
Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.)
Assertion
Ref Expression
dfatco ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)

Proof of Theorem dfatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatcolem 45963 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹𝐺)𝑦)
2 euex 2572 . . . 4 (∃!𝑦 𝑋(𝐹𝐺)𝑦 → ∃𝑦 𝑋(𝐹𝐺)𝑦)
31, 2syl 17 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹𝐺)𝑦)
4 df-dm 5687 . . . . 5 dom (𝐹𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦}
54eleq2i 2826 . . . 4 (𝑋 ∈ dom (𝐹𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦})
6 df-dfat 45827 . . . . . . 7 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
76simplbi 499 . . . . . 6 (𝐺 defAt 𝑋𝑋 ∈ dom 𝐺)
87adantr 482 . . . . 5 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺)
9 breq1 5152 . . . . . . 7 (𝑥 = 𝑋 → (𝑥(𝐹𝐺)𝑦𝑋(𝐹𝐺)𝑦))
109exbidv 1925 . . . . . 6 (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
1110elabg 3667 . . . . 5 (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
128, 11syl 17 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
135, 12bitrid 283 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
143, 13mpbird 257 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹𝐺))
15 dfdfat2 45836 . 2 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ ∃!𝑦 𝑋(𝐹𝐺)𝑦))
1614, 1, 15sylanbrc 584 1 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  ∃!weu 2563  {cab 2710  {csn 4629   class class class wbr 5149  dom cdm 5677  cres 5679  ccom 5681  Fun wfun 6538   defAt wdfat 45824  ''''cafv2 45916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-res 5689  df-iota 6496  df-fun 6546  df-fn 6547  df-dfat 45827  df-afv2 45917
This theorem is referenced by:  afv2co2  45965
  Copyright terms: Public domain W3C validator