![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatco | Structured version Visualization version GIF version |
Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
Ref | Expression |
---|---|
dfatco | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfatcolem 45561 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
2 | euex 2576 | . . . 4 ⊢ (∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦 → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) |
4 | df-dm 5648 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} | |
5 | 4 | eleq2i 2830 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦}) |
6 | df-dfat 45425 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋}))) | |
7 | 6 | simplbi 499 | . . . . . 6 ⊢ (𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺) |
8 | 7 | adantr 482 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺) |
9 | breq1 5113 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
10 | 9 | exbidv 1925 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
11 | 10 | elabg 3633 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
12 | 8, 11 | syl 17 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
13 | 5, 12 | bitrid 283 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
14 | 3, 13 | mpbird 257 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹 ∘ 𝐺)) |
15 | dfdfat2 45434 | . 2 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
16 | 14, 1, 15 | sylanbrc 584 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃!weu 2567 {cab 2714 {csn 4591 class class class wbr 5110 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 Fun wfun 6495 defAt wdfat 45422 ''''cafv2 45514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6453 df-fun 6503 df-fn 6504 df-dfat 45425 df-afv2 45515 |
This theorem is referenced by: afv2co2 45563 |
Copyright terms: Public domain | W3C validator |