| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfatco | Structured version Visualization version GIF version | ||
| Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.) |
| Ref | Expression |
|---|---|
| dfatco | ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfatcolem 47256 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
| 2 | euex 2570 | . . . 4 ⊢ (∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦 → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦) |
| 4 | df-dm 5648 | . . . . 5 ⊢ dom (𝐹 ∘ 𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} | |
| 5 | 4 | eleq2i 2820 | . . . 4 ⊢ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦}) |
| 6 | df-dfat 47120 | . . . . . . 7 ⊢ (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋}))) | |
| 7 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝐺 defAt 𝑋 → 𝑋 ∈ dom 𝐺) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺) |
| 9 | breq1 5110 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → (𝑥(𝐹 ∘ 𝐺)𝑦 ↔ 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
| 10 | 9 | exbidv 1921 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 11 | 10 | elabg 3643 | . . . . 5 ⊢ (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 12 | 8, 11 | syl 17 | . . . 4 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹 ∘ 𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 13 | 5, 12 | bitrid 283 | . . 3 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹 ∘ 𝐺) ↔ ∃𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) |
| 14 | 3, 13 | mpbird 257 | . 2 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹 ∘ 𝐺)) |
| 15 | dfdfat2 47129 | . 2 ⊢ ((𝐹 ∘ 𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹 ∘ 𝐺) ∧ ∃!𝑦 𝑋(𝐹 ∘ 𝐺)𝑦)) | |
| 16 | 14, 1, 15 | sylanbrc 583 | 1 ⊢ ((𝐺 defAt 𝑋 ∧ 𝐹 defAt (𝐺''''𝑋)) → (𝐹 ∘ 𝐺) defAt 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃!weu 2561 {cab 2707 {csn 4589 class class class wbr 5107 dom cdm 5638 ↾ cres 5640 ∘ ccom 5642 Fun wfun 6505 defAt wdfat 47117 ''''cafv2 47209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-dfat 47120 df-afv2 47210 |
| This theorem is referenced by: afv2co2 47258 |
| Copyright terms: Public domain | W3C validator |