Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfatco Structured version   Visualization version   GIF version

Theorem dfatco 44748
Description: The predicate "defined at" for a function composition. (Contributed by AV, 8-Sep-2022.)
Assertion
Ref Expression
dfatco ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)

Proof of Theorem dfatco
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfatcolem 44747 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃!𝑦 𝑋(𝐹𝐺)𝑦)
2 euex 2577 . . . 4 (∃!𝑦 𝑋(𝐹𝐺)𝑦 → ∃𝑦 𝑋(𝐹𝐺)𝑦)
31, 2syl 17 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → ∃𝑦 𝑋(𝐹𝐺)𝑦)
4 df-dm 5599 . . . . 5 dom (𝐹𝐺) = {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦}
54eleq2i 2830 . . . 4 (𝑋 ∈ dom (𝐹𝐺) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦})
6 df-dfat 44611 . . . . . . 7 (𝐺 defAt 𝑋 ↔ (𝑋 ∈ dom 𝐺 ∧ Fun (𝐺 ↾ {𝑋})))
76simplbi 498 . . . . . 6 (𝐺 defAt 𝑋𝑋 ∈ dom 𝐺)
87adantr 481 . . . . 5 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom 𝐺)
9 breq1 5077 . . . . . . 7 (𝑥 = 𝑋 → (𝑥(𝐹𝐺)𝑦𝑋(𝐹𝐺)𝑦))
109exbidv 1924 . . . . . 6 (𝑥 = 𝑋 → (∃𝑦 𝑥(𝐹𝐺)𝑦 ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
1110elabg 3607 . . . . 5 (𝑋 ∈ dom 𝐺 → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
128, 11syl 17 . . . 4 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ {𝑥 ∣ ∃𝑦 𝑥(𝐹𝐺)𝑦} ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
135, 12syl5bb 283 . . 3 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝑋 ∈ dom (𝐹𝐺) ↔ ∃𝑦 𝑋(𝐹𝐺)𝑦))
143, 13mpbird 256 . 2 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → 𝑋 ∈ dom (𝐹𝐺))
15 dfdfat2 44620 . 2 ((𝐹𝐺) defAt 𝑋 ↔ (𝑋 ∈ dom (𝐹𝐺) ∧ ∃!𝑦 𝑋(𝐹𝐺)𝑦))
1614, 1, 15sylanbrc 583 1 ((𝐺 defAt 𝑋𝐹 defAt (𝐺''''𝑋)) → (𝐹𝐺) defAt 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  ∃!weu 2568  {cab 2715  {csn 4561   class class class wbr 5074  dom cdm 5589  cres 5591  ccom 5593  Fun wfun 6427   defAt wdfat 44608  ''''cafv2 44700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fn 6436  df-dfat 44611  df-afv2 44701
This theorem is referenced by:  afv2co2  44749
  Copyright terms: Public domain W3C validator