MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm2 Structured version   Visualization version   GIF version

Theorem dfdm2 6275
Description: Alternate definition of domain df-dm 5669 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 5870 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 6252 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2759 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 4900 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 4900 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 6273 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2761 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 5670 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2745 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 5963 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 5964 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 5880 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2762 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 4146 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 4137 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2764 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3929   cuni 4888  ccnv 5658  dom cdm 5659  ran crn 5660  ccom 5663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator