MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm2 Structured version   Visualization version   GIF version

Theorem dfdm2 6184
Description: Alternate definition of domain df-dm 5599 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 5794 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 6162 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2766 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 4852 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 4852 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 6182 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2768 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 5600 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2747 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 5883 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 5884 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 5804 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2769 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 4095 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 4086 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2771 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cun 3885   cuni 4839  ccnv 5588  dom cdm 5589  ran crn 5590  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator