MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdm2 Structured version   Visualization version   GIF version

Theorem dfdm2 6100
Description: Alternate definition of domain df-dm 5529 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.)
Assertion
Ref Expression
dfdm2 dom 𝐴 = (𝐴𝐴)

Proof of Theorem dfdm2
StepHypRef Expression
1 cnvco 5720 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
2 cocnvcnv2 6078 . . . . . 6 (𝐴𝐴) = (𝐴𝐴)
31, 2eqtri 2821 . . . . 5 (𝐴𝐴) = (𝐴𝐴)
43unieqi 4813 . . . 4 (𝐴𝐴) = (𝐴𝐴)
54unieqi 4813 . . 3 (𝐴𝐴) = (𝐴𝐴)
6 unidmrn 6098 . . 3 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
75, 6eqtr3i 2823 . 2 (𝐴𝐴) = (dom (𝐴𝐴) ∪ ran (𝐴𝐴))
8 df-rn 5530 . . . . 5 ran 𝐴 = dom 𝐴
98eqcomi 2807 . . . 4 dom 𝐴 = ran 𝐴
10 dmcoeq 5810 . . . 4 (dom 𝐴 = ran 𝐴 → dom (𝐴𝐴) = dom 𝐴)
119, 10ax-mp 5 . . 3 dom (𝐴𝐴) = dom 𝐴
12 rncoeq 5811 . . . . 5 (dom 𝐴 = ran 𝐴 → ran (𝐴𝐴) = ran 𝐴)
139, 12ax-mp 5 . . . 4 ran (𝐴𝐴) = ran 𝐴
14 dfdm4 5728 . . . 4 dom 𝐴 = ran 𝐴
1513, 14eqtr4i 2824 . . 3 ran (𝐴𝐴) = dom 𝐴
1611, 15uneq12i 4088 . 2 (dom (𝐴𝐴) ∪ ran (𝐴𝐴)) = (dom 𝐴 ∪ dom 𝐴)
17 unidm 4079 . 2 (dom 𝐴 ∪ dom 𝐴) = dom 𝐴
187, 16, 173eqtrri 2826 1 dom 𝐴 = (𝐴𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  cun 3879   cuni 4800  ccnv 5518  dom cdm 5519  ran crn 5520  ccom 5523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator