![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm2 | Structured version Visualization version GIF version |
Description: Alternate definition of domain df-dm 5365 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
Ref | Expression |
---|---|
dfdm2 | ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5553 | . . . . . 6 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ ◡◡𝐴) | |
2 | cocnvcnv2 5901 | . . . . . 6 ⊢ (◡𝐴 ∘ ◡◡𝐴) = (◡𝐴 ∘ 𝐴) | |
3 | 1, 2 | eqtri 2801 | . . . . 5 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ 𝐴) |
4 | 3 | unieqi 4680 | . . . 4 ⊢ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ (◡𝐴 ∘ 𝐴) |
5 | 4 | unieqi 4680 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ ∪ (◡𝐴 ∘ 𝐴) |
6 | unidmrn 5919 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) | |
7 | 5, 6 | eqtr3i 2803 | . 2 ⊢ ∪ ∪ (◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) |
8 | df-rn 5366 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
9 | 8 | eqcomi 2786 | . . . 4 ⊢ dom ◡𝐴 = ran 𝐴 |
10 | dmcoeq 5634 | . . . 4 ⊢ (dom ◡𝐴 = ran 𝐴 → dom (◡𝐴 ∘ 𝐴) = dom 𝐴) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ dom (◡𝐴 ∘ 𝐴) = dom 𝐴 |
12 | rncoeq 5635 | . . . . 5 ⊢ (dom ◡𝐴 = ran 𝐴 → ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴) | |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴 |
14 | dfdm4 5561 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
15 | 13, 14 | eqtr4i 2804 | . . 3 ⊢ ran (◡𝐴 ∘ 𝐴) = dom 𝐴 |
16 | 11, 15 | uneq12i 3987 | . 2 ⊢ (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) = (dom 𝐴 ∪ dom 𝐴) |
17 | unidm 3978 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐴) = dom 𝐴 | |
18 | 7, 16, 17 | 3eqtrri 2806 | 1 ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ∪ cun 3789 ∪ cuni 4671 ◡ccnv 5354 dom cdm 5355 ran crn 5356 ∘ ccom 5359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-11 2149 ax-12 2162 ax-13 2333 ax-ext 2753 ax-sep 5017 ax-nul 5025 ax-pr 5138 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2550 df-eu 2586 df-clab 2763 df-cleq 2769 df-clel 2773 df-nfc 2920 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3399 df-dif 3794 df-un 3796 df-in 3798 df-ss 3805 df-nul 4141 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4672 df-br 4887 df-opab 4949 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |