![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm2 | Structured version Visualization version GIF version |
Description: Alternate definition of domain df-dm 5687 that doesn't require dummy variables. (Contributed by NM, 2-Aug-2010.) |
Ref | Expression |
---|---|
dfdm2 | ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5886 | . . . . . 6 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ ◡◡𝐴) | |
2 | cocnvcnv2 6258 | . . . . . 6 ⊢ (◡𝐴 ∘ ◡◡𝐴) = (◡𝐴 ∘ 𝐴) | |
3 | 1, 2 | eqtri 2761 | . . . . 5 ⊢ ◡(◡𝐴 ∘ 𝐴) = (◡𝐴 ∘ 𝐴) |
4 | 3 | unieqi 4922 | . . . 4 ⊢ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ (◡𝐴 ∘ 𝐴) |
5 | 4 | unieqi 4922 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = ∪ ∪ (◡𝐴 ∘ 𝐴) |
6 | unidmrn 6279 | . . 3 ⊢ ∪ ∪ ◡(◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) | |
7 | 5, 6 | eqtr3i 2763 | . 2 ⊢ ∪ ∪ (◡𝐴 ∘ 𝐴) = (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) |
8 | df-rn 5688 | . . . . 5 ⊢ ran 𝐴 = dom ◡𝐴 | |
9 | 8 | eqcomi 2742 | . . . 4 ⊢ dom ◡𝐴 = ran 𝐴 |
10 | dmcoeq 5974 | . . . 4 ⊢ (dom ◡𝐴 = ran 𝐴 → dom (◡𝐴 ∘ 𝐴) = dom 𝐴) | |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ dom (◡𝐴 ∘ 𝐴) = dom 𝐴 |
12 | rncoeq 5975 | . . . . 5 ⊢ (dom ◡𝐴 = ran 𝐴 → ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴) | |
13 | 9, 12 | ax-mp 5 | . . . 4 ⊢ ran (◡𝐴 ∘ 𝐴) = ran ◡𝐴 |
14 | dfdm4 5896 | . . . 4 ⊢ dom 𝐴 = ran ◡𝐴 | |
15 | 13, 14 | eqtr4i 2764 | . . 3 ⊢ ran (◡𝐴 ∘ 𝐴) = dom 𝐴 |
16 | 11, 15 | uneq12i 4162 | . 2 ⊢ (dom (◡𝐴 ∘ 𝐴) ∪ ran (◡𝐴 ∘ 𝐴)) = (dom 𝐴 ∪ dom 𝐴) |
17 | unidm 4153 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐴) = dom 𝐴 | |
18 | 7, 16, 17 | 3eqtrri 2766 | 1 ⊢ dom 𝐴 = ∪ ∪ (◡𝐴 ∘ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∪ cun 3947 ∪ cuni 4909 ◡ccnv 5676 dom cdm 5677 ran crn 5678 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |