MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfdmf Structured version   Visualization version   GIF version

Theorem dfdmf 5843
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
dfdmf.1 𝑥𝐴
dfdmf.2 𝑦𝐴
Assertion
Ref Expression
dfdmf dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)

Proof of Theorem dfdmf
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dm 5635 . 2 dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣}
2 nfcv 2905 . . . . 5 𝑦𝑤
3 dfdmf.2 . . . . 5 𝑦𝐴
4 nfcv 2905 . . . . 5 𝑦𝑣
52, 3, 4nfbr 5144 . . . 4 𝑦 𝑤𝐴𝑣
6 nfv 1917 . . . 4 𝑣 𝑤𝐴𝑦
7 breq2 5101 . . . 4 (𝑣 = 𝑦 → (𝑤𝐴𝑣𝑤𝐴𝑦))
85, 6, 7cbvexv1 2339 . . 3 (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦)
98abbii 2807 . 2 {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦}
10 nfcv 2905 . . . . 5 𝑥𝑤
11 dfdmf.1 . . . . 5 𝑥𝐴
12 nfcv 2905 . . . . 5 𝑥𝑦
1310, 11, 12nfbr 5144 . . . 4 𝑥 𝑤𝐴𝑦
1413nfex 2318 . . 3 𝑥𝑦 𝑤𝐴𝑦
15 nfv 1917 . . 3 𝑤𝑦 𝑥𝐴𝑦
16 breq1 5100 . . . 4 (𝑤 = 𝑥 → (𝑤𝐴𝑦𝑥𝐴𝑦))
1716exbidv 1924 . . 3 (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦))
1814, 15, 17cbvabw 2811 . 2 {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
191, 9, 183eqtri 2769 1 dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wex 1781  {cab 2714  wnfc 2885   class class class wbr 5097  dom cdm 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-sn 4579  df-pr 4581  df-op 4585  df-br 5098  df-dm 5635
This theorem is referenced by:  dmopab  5862
  Copyright terms: Public domain W3C validator