![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdmf | Structured version Visualization version GIF version |
Description: Definition of domain, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
dfdmf.1 | ⊢ Ⅎ𝑥𝐴 |
dfdmf.2 | ⊢ Ⅎ𝑦𝐴 |
Ref | Expression |
---|---|
dfdmf | ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dm 5414 | . 2 ⊢ dom 𝐴 = {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} | |
2 | nfcv 2927 | . . . . 5 ⊢ Ⅎ𝑦𝑤 | |
3 | dfdmf.2 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
4 | nfcv 2927 | . . . . 5 ⊢ Ⅎ𝑦𝑣 | |
5 | 2, 3, 4 | nfbr 4973 | . . . 4 ⊢ Ⅎ𝑦 𝑤𝐴𝑣 |
6 | nfv 1874 | . . . 4 ⊢ Ⅎ𝑣 𝑤𝐴𝑦 | |
7 | breq2 4930 | . . . 4 ⊢ (𝑣 = 𝑦 → (𝑤𝐴𝑣 ↔ 𝑤𝐴𝑦)) | |
8 | 5, 6, 7 | cbvexv1 2279 | . . 3 ⊢ (∃𝑣 𝑤𝐴𝑣 ↔ ∃𝑦 𝑤𝐴𝑦) |
9 | 8 | abbii 2839 | . 2 ⊢ {𝑤 ∣ ∃𝑣 𝑤𝐴𝑣} = {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} |
10 | nfcv 2927 | . . . . 5 ⊢ Ⅎ𝑥𝑤 | |
11 | dfdmf.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
12 | nfcv 2927 | . . . . 5 ⊢ Ⅎ𝑥𝑦 | |
13 | 10, 11, 12 | nfbr 4973 | . . . 4 ⊢ Ⅎ𝑥 𝑤𝐴𝑦 |
14 | 13 | nfex 2265 | . . 3 ⊢ Ⅎ𝑥∃𝑦 𝑤𝐴𝑦 |
15 | nfv 1874 | . . 3 ⊢ Ⅎ𝑤∃𝑦 𝑥𝐴𝑦 | |
16 | breq1 4929 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝑤𝐴𝑦 ↔ 𝑥𝐴𝑦)) | |
17 | 16 | exbidv 1881 | . . 3 ⊢ (𝑤 = 𝑥 → (∃𝑦 𝑤𝐴𝑦 ↔ ∃𝑦 𝑥𝐴𝑦)) |
18 | 14, 15, 17 | cbvab 2906 | . 2 ⊢ {𝑤 ∣ ∃𝑦 𝑤𝐴𝑦} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
19 | 1, 9, 18 | 3eqtri 2801 | 1 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ∃wex 1743 {cab 2753 Ⅎwnfc 2911 class class class wbr 4926 dom cdm 5404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-rab 3092 df-v 3412 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-br 4927 df-dm 5414 |
This theorem is referenced by: dmopab 5631 |
Copyright terms: Public domain | W3C validator |