Step | Hyp | Ref
| Expression |
1 | | simpr 485 |
. . . . 5
⊢ ((𝜑 ∧ Fun 𝐹) → Fun 𝐹) |
2 | | flift.1 |
. . . . . . . . . . 11
⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) |
3 | | flift.2 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑅) |
4 | | flift.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑆) |
5 | 2, 3, 4 | fliftel 7180 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 (𝑦 = 𝐴 ∧ 𝑧 = 𝐵))) |
6 | 5 | exbidv 1924 |
. . . . . . . . 9
⊢ (𝜑 → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑧∃𝑥 ∈ 𝑋 (𝑦 = 𝐴 ∧ 𝑧 = 𝐵))) |
7 | 6 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ Fun 𝐹) → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑧∃𝑥 ∈ 𝑋 (𝑦 = 𝐴 ∧ 𝑧 = 𝐵))) |
8 | | rexcom4 3233 |
. . . . . . . . 9
⊢
(∃𝑥 ∈
𝑋 ∃𝑧(𝑦 = 𝐴 ∧ 𝑧 = 𝐵) ↔ ∃𝑧∃𝑥 ∈ 𝑋 (𝑦 = 𝐴 ∧ 𝑧 = 𝐵)) |
9 | | 19.42v 1957 |
. . . . . . . . . . . 12
⊢
(∃𝑧(𝑦 = 𝐴 ∧ 𝑧 = 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑧 𝑧 = 𝐵)) |
10 | | elisset 2820 |
. . . . . . . . . . . . . 14
⊢ (𝐵 ∈ 𝑆 → ∃𝑧 𝑧 = 𝐵) |
11 | 4, 10 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑧 𝑧 = 𝐵) |
12 | 11 | biantrud 532 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ ∃𝑧 𝑧 = 𝐵))) |
13 | 9, 12 | bitr4id 290 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (∃𝑧(𝑦 = 𝐴 ∧ 𝑧 = 𝐵) ↔ 𝑦 = 𝐴)) |
14 | 13 | rexbidva 3225 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑥 ∈ 𝑋 ∃𝑧(𝑦 = 𝐴 ∧ 𝑧 = 𝐵) ↔ ∃𝑥 ∈ 𝑋 𝑦 = 𝐴)) |
15 | 14 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ Fun 𝐹) → (∃𝑥 ∈ 𝑋 ∃𝑧(𝑦 = 𝐴 ∧ 𝑧 = 𝐵) ↔ ∃𝑥 ∈ 𝑋 𝑦 = 𝐴)) |
16 | 8, 15 | bitr3id 285 |
. . . . . . . 8
⊢ ((𝜑 ∧ Fun 𝐹) → (∃𝑧∃𝑥 ∈ 𝑋 (𝑦 = 𝐴 ∧ 𝑧 = 𝐵) ↔ ∃𝑥 ∈ 𝑋 𝑦 = 𝐴)) |
17 | 7, 16 | bitrd 278 |
. . . . . . 7
⊢ ((𝜑 ∧ Fun 𝐹) → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑥 ∈ 𝑋 𝑦 = 𝐴)) |
18 | 17 | abbidv 2807 |
. . . . . 6
⊢ ((𝜑 ∧ Fun 𝐹) → {𝑦 ∣ ∃𝑧 𝑦𝐹𝑧} = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = 𝐴}) |
19 | | df-dm 5599 |
. . . . . 6
⊢ dom 𝐹 = {𝑦 ∣ ∃𝑧 𝑦𝐹𝑧} |
20 | | eqid 2738 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
21 | 20 | rnmpt 5864 |
. . . . . 6
⊢ ran
(𝑥 ∈ 𝑋 ↦ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝑋 𝑦 = 𝐴} |
22 | 18, 19, 21 | 3eqtr4g 2803 |
. . . . 5
⊢ ((𝜑 ∧ Fun 𝐹) → dom 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 𝐴)) |
23 | | df-fn 6436 |
. . . . 5
⊢ (𝐹 Fn ran (𝑥 ∈ 𝑋 ↦ 𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 𝐴))) |
24 | 1, 22, 23 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ Fun 𝐹) → 𝐹 Fn ran (𝑥 ∈ 𝑋 ↦ 𝐴)) |
25 | 2, 3, 4 | fliftrel 7179 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ⊆ (𝑅 × 𝑆)) |
26 | 25 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ Fun 𝐹) → 𝐹 ⊆ (𝑅 × 𝑆)) |
27 | | rnss 5848 |
. . . . . 6
⊢ (𝐹 ⊆ (𝑅 × 𝑆) → ran 𝐹 ⊆ ran (𝑅 × 𝑆)) |
28 | 26, 27 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ Fun 𝐹) → ran 𝐹 ⊆ ran (𝑅 × 𝑆)) |
29 | | rnxpss 6075 |
. . . . 5
⊢ ran
(𝑅 × 𝑆) ⊆ 𝑆 |
30 | 28, 29 | sstrdi 3933 |
. . . 4
⊢ ((𝜑 ∧ Fun 𝐹) → ran 𝐹 ⊆ 𝑆) |
31 | | df-f 6437 |
. . . 4
⊢ (𝐹:ran (𝑥 ∈ 𝑋 ↦ 𝐴)⟶𝑆 ↔ (𝐹 Fn ran (𝑥 ∈ 𝑋 ↦ 𝐴) ∧ ran 𝐹 ⊆ 𝑆)) |
32 | 24, 30, 31 | sylanbrc 583 |
. . 3
⊢ ((𝜑 ∧ Fun 𝐹) → 𝐹:ran (𝑥 ∈ 𝑋 ↦ 𝐴)⟶𝑆) |
33 | 32 | ex 413 |
. 2
⊢ (𝜑 → (Fun 𝐹 → 𝐹:ran (𝑥 ∈ 𝑋 ↦ 𝐴)⟶𝑆)) |
34 | | ffun 6603 |
. 2
⊢ (𝐹:ran (𝑥 ∈ 𝑋 ↦ 𝐴)⟶𝑆 → Fun 𝐹) |
35 | 33, 34 | impbid1 224 |
1
⊢ (𝜑 → (Fun 𝐹 ↔ 𝐹:ran (𝑥 ∈ 𝑋 ↦ 𝐴)⟶𝑆)) |