MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fliftf Structured version   Visualization version   GIF version

Theorem fliftf 7351
Description: The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
flift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
flift.2 ((𝜑𝑥𝑋) → 𝐴𝑅)
flift.3 ((𝜑𝑥𝑋) → 𝐵𝑆)
Assertion
Ref Expression
fliftf (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
Distinct variable groups:   𝑥,𝑅   𝜑,𝑥   𝑥,𝑋   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐹(𝑥)

Proof of Theorem fliftf
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑 ∧ Fun 𝐹) → Fun 𝐹)
2 flift.1 . . . . . . . . . . 11 𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)
3 flift.2 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐴𝑅)
4 flift.3 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → 𝐵𝑆)
52, 3, 4fliftel 7345 . . . . . . . . . 10 (𝜑 → (𝑦𝐹𝑧 ↔ ∃𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵)))
65exbidv 1920 . . . . . . . . 9 (𝜑 → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵)))
76adantr 480 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵)))
8 rexcom4 3294 . . . . . . . . 9 (∃𝑥𝑋𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵))
9 19.42v 1953 . . . . . . . . . . . 12 (∃𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ (𝑦 = 𝐴 ∧ ∃𝑧 𝑧 = 𝐵))
10 elisset 2826 . . . . . . . . . . . . . 14 (𝐵𝑆 → ∃𝑧 𝑧 = 𝐵)
114, 10syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → ∃𝑧 𝑧 = 𝐵)
1211biantrud 531 . . . . . . . . . . . 12 ((𝜑𝑥𝑋) → (𝑦 = 𝐴 ↔ (𝑦 = 𝐴 ∧ ∃𝑧 𝑧 = 𝐵)))
139, 12bitr4id 290 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (∃𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ 𝑦 = 𝐴))
1413rexbidva 3183 . . . . . . . . . 10 (𝜑 → (∃𝑥𝑋𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑥𝑋 𝑦 = 𝐴))
1514adantr 480 . . . . . . . . 9 ((𝜑 ∧ Fun 𝐹) → (∃𝑥𝑋𝑧(𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑥𝑋 𝑦 = 𝐴))
168, 15bitr3id 285 . . . . . . . 8 ((𝜑 ∧ Fun 𝐹) → (∃𝑧𝑥𝑋 (𝑦 = 𝐴𝑧 = 𝐵) ↔ ∃𝑥𝑋 𝑦 = 𝐴))
177, 16bitrd 279 . . . . . . 7 ((𝜑 ∧ Fun 𝐹) → (∃𝑧 𝑦𝐹𝑧 ↔ ∃𝑥𝑋 𝑦 = 𝐴))
1817abbidv 2811 . . . . . 6 ((𝜑 ∧ Fun 𝐹) → {𝑦 ∣ ∃𝑧 𝑦𝐹𝑧} = {𝑦 ∣ ∃𝑥𝑋 𝑦 = 𝐴})
19 df-dm 5710 . . . . . 6 dom 𝐹 = {𝑦 ∣ ∃𝑧 𝑦𝐹𝑧}
20 eqid 2740 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2120rnmpt 5980 . . . . . 6 ran (𝑥𝑋𝐴) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = 𝐴}
2218, 19, 213eqtr4g 2805 . . . . 5 ((𝜑 ∧ Fun 𝐹) → dom 𝐹 = ran (𝑥𝑋𝐴))
23 df-fn 6576 . . . . 5 (𝐹 Fn ran (𝑥𝑋𝐴) ↔ (Fun 𝐹 ∧ dom 𝐹 = ran (𝑥𝑋𝐴)))
241, 22, 23sylanbrc 582 . . . 4 ((𝜑 ∧ Fun 𝐹) → 𝐹 Fn ran (𝑥𝑋𝐴))
252, 3, 4fliftrel 7344 . . . . . . 7 (𝜑𝐹 ⊆ (𝑅 × 𝑆))
2625adantr 480 . . . . . 6 ((𝜑 ∧ Fun 𝐹) → 𝐹 ⊆ (𝑅 × 𝑆))
27 rnss 5964 . . . . . 6 (𝐹 ⊆ (𝑅 × 𝑆) → ran 𝐹 ⊆ ran (𝑅 × 𝑆))
2826, 27syl 17 . . . . 5 ((𝜑 ∧ Fun 𝐹) → ran 𝐹 ⊆ ran (𝑅 × 𝑆))
29 rnxpss 6203 . . . . 5 ran (𝑅 × 𝑆) ⊆ 𝑆
3028, 29sstrdi 4021 . . . 4 ((𝜑 ∧ Fun 𝐹) → ran 𝐹𝑆)
31 df-f 6577 . . . 4 (𝐹:ran (𝑥𝑋𝐴)⟶𝑆 ↔ (𝐹 Fn ran (𝑥𝑋𝐴) ∧ ran 𝐹𝑆))
3224, 30, 31sylanbrc 582 . . 3 ((𝜑 ∧ Fun 𝐹) → 𝐹:ran (𝑥𝑋𝐴)⟶𝑆)
3332ex 412 . 2 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
34 ffun 6750 . 2 (𝐹:ran (𝑥𝑋𝐴)⟶𝑆 → Fun 𝐹)
3533, 34impbid1 225 1 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wrex 3076  wss 3976  cop 4654   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by:  qliftf  8863  cygznlem2a  21609  pi1xfrf  25105  pi1cof  25111
  Copyright terms: Public domain W3C validator