![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmun | Structured version Visualization version GIF version |
Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dmun | ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unab 4244 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} | |
2 | brun 5140 | . . . . . 6 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
3 | 2 | exbii 1849 | . . . . 5 ⊢ (∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥 ↔ ∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) |
4 | 19.43 1884 | . . . . 5 ⊢ (∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥) ↔ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)) | |
5 | 3, 4 | bitr2i 275 | . . . 4 ⊢ ((∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥) ↔ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥) |
6 | 5 | abbii 2806 | . . 3 ⊢ {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
7 | 1, 6 | eqtri 2764 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
8 | df-dm 5624 | . . 3 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} | |
9 | df-dm 5624 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥} | |
10 | 8, 9 | uneq12i 4107 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) |
11 | df-dm 5624 | . 2 ⊢ dom (𝐴 ∪ 𝐵) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} | |
12 | 7, 10, 11 | 3eqtr4ri 2775 | 1 ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∃wex 1780 {cab 2713 ∪ cun 3895 class class class wbr 5089 dom cdm 5614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3443 df-un 3902 df-br 5090 df-dm 5624 |
This theorem is referenced by: rnun 6078 dmpropg 6147 dmtpop 6150 fntpg 6538 fnun 6591 frrlem14 8177 wfrlem13OLD 8214 wfrlem16OLD 8217 tfrlem10 8280 sbthlem5 8944 fodomr 8985 axdc3lem4 10302 hashfun 14244 s4dom 14723 dmtrclfv 14820 strleun 16947 setsdm 16960 estrreslem2 17944 mvdco 19141 gsumzaddlem 19609 cnfldfunALT 20708 cnfldfunALTOLD 20709 noextend 26912 noextendseq 26913 nosupbday 26951 nosupbnd1 26960 nosupbnd2 26962 noinfbday 26966 noinfbnd1 26975 noinfbnd2 26977 noetasuplem4 26982 noetainflem4 26986 uhgrun 27674 upgrun 27718 umgrun 27720 vtxdun 28078 wlkp1 28278 eupthp1 28809 bnj1416 33259 fineqvac 33306 satfdm 33571 fmlasuc0 33586 fixun 34302 rclexi 41533 rtrclex 41535 rtrclexi 41539 cnvrcl0 41543 dmtrcl 41545 dfrtrcl5 41547 dfrcl2 41592 dmtrclfvRP 41648 |
Copyright terms: Public domain | W3C validator |