| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmun | Structured version Visualization version GIF version | ||
| Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmun | ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 4271 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} | |
| 2 | brun 5158 | . . . . . 6 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 3 | 2 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥 ↔ ∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) |
| 4 | 19.43 1882 | . . . . 5 ⊢ (∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥) ↔ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)) | |
| 5 | 3, 4 | bitr2i 276 | . . . 4 ⊢ ((∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥) ↔ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥) |
| 6 | 5 | abbii 2796 | . . 3 ⊢ {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 7 | 1, 6 | eqtri 2752 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 8 | df-dm 5648 | . . 3 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} | |
| 9 | df-dm 5648 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥} | |
| 10 | 8, 9 | uneq12i 4129 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) |
| 11 | df-dm 5648 | . 2 ⊢ dom (𝐴 ∪ 𝐵) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 12 | 7, 10, 11 | 3eqtr4ri 2763 | 1 ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∃wex 1779 {cab 2707 ∪ cun 3912 class class class wbr 5107 dom cdm 5638 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-br 5108 df-dm 5648 |
| This theorem is referenced by: rnun 6118 dmpropg 6188 dmtpop 6191 fntpg 6576 fnun 6632 frrlem14 8278 tfrlem10 8355 sbthlem5 9055 fodomr 9092 fodomfir 9279 axdc3lem4 10406 hashfun 14402 s4dom 14885 dmtrclfv 14984 strleun 17127 setsdm 17140 estrreslem2 18099 mvdco 19375 gsumzaddlem 19851 cnfldfunALT 21279 cnfldfunALTOLD 21292 noextend 27578 noextendseq 27579 nosupbday 27617 nosupbnd1 27626 nosupbnd2 27628 noinfbday 27632 noinfbnd1 27641 noinfbnd2 27643 noetasuplem4 27648 noetainflem4 27652 uhgrun 29001 upgrun 29045 umgrun 29047 vtxdun 29409 wlkp1 29609 eupthp1 30145 bnj1416 35029 fineqvac 35087 satfdm 35356 fmlasuc0 35371 fixun 35897 rclexi 43604 rtrclex 43606 rtrclexi 43610 cnvrcl0 43614 dmtrcl 43616 dfrtrcl5 43618 dfrcl2 43663 dmtrclfvRP 43719 |
| Copyright terms: Public domain | W3C validator |