| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmun | Structured version Visualization version GIF version | ||
| Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmun | ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 4308 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} | |
| 2 | brun 5194 | . . . . . 6 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 3 | 2 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥 ↔ ∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) |
| 4 | 19.43 1882 | . . . . 5 ⊢ (∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥) ↔ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)) | |
| 5 | 3, 4 | bitr2i 276 | . . . 4 ⊢ ((∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥) ↔ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥) |
| 6 | 5 | abbii 2809 | . . 3 ⊢ {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 7 | 1, 6 | eqtri 2765 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 8 | df-dm 5695 | . . 3 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} | |
| 9 | df-dm 5695 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥} | |
| 10 | 8, 9 | uneq12i 4166 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) |
| 11 | df-dm 5695 | . 2 ⊢ dom (𝐴 ∪ 𝐵) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 12 | 7, 10, 11 | 3eqtr4ri 2776 | 1 ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 848 = wceq 1540 ∃wex 1779 {cab 2714 ∪ cun 3949 class class class wbr 5143 dom cdm 5685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 df-br 5144 df-dm 5695 |
| This theorem is referenced by: rnun 6165 dmpropg 6235 dmtpop 6238 fntpg 6626 fnun 6682 frrlem14 8324 wfrlem13OLD 8361 wfrlem16OLD 8364 tfrlem10 8427 sbthlem5 9127 fodomr 9168 fodomfir 9368 axdc3lem4 10493 hashfun 14476 s4dom 14958 dmtrclfv 15057 strleun 17194 setsdm 17207 estrreslem2 18183 mvdco 19463 gsumzaddlem 19939 cnfldfunALT 21379 cnfldfunALTOLD 21392 cnfldfunALTOLDOLD 21393 noextend 27711 noextendseq 27712 nosupbday 27750 nosupbnd1 27759 nosupbnd2 27761 noinfbday 27765 noinfbnd1 27774 noinfbnd2 27776 noetasuplem4 27781 noetainflem4 27785 uhgrun 29091 upgrun 29135 umgrun 29137 vtxdun 29499 wlkp1 29699 eupthp1 30235 bnj1416 35053 fineqvac 35111 satfdm 35374 fmlasuc0 35389 fixun 35910 rclexi 43628 rtrclex 43630 rtrclexi 43634 cnvrcl0 43638 dmtrcl 43640 dfrtrcl5 43642 dfrcl2 43687 dmtrclfvRP 43743 |
| Copyright terms: Public domain | W3C validator |