| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmun | Structured version Visualization version GIF version | ||
| Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmun | ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 5098 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦𝐴𝑥 ↔ 𝑧𝐴𝑥)) | |
| 2 | 1 | exbidv 1922 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 𝑦𝐴𝑥 ↔ ∃𝑥 𝑧𝐴𝑥)) |
| 3 | breq1 5098 | . . . . 5 ⊢ (𝑦 = 𝑧 → (𝑦𝐵𝑥 ↔ 𝑧𝐵𝑥)) | |
| 4 | 3 | exbidv 1922 | . . . 4 ⊢ (𝑦 = 𝑧 → (∃𝑥 𝑦𝐵𝑥 ↔ ∃𝑥 𝑧𝐵𝑥)) |
| 5 | 2, 4 | unabw 4256 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑧 ∣ (∃𝑥 𝑧𝐴𝑥 ∨ ∃𝑥 𝑧𝐵𝑥)} |
| 6 | brun 5146 | . . . . . 6 ⊢ (𝑧(𝐴 ∪ 𝐵)𝑥 ↔ (𝑧𝐴𝑥 ∨ 𝑧𝐵𝑥)) | |
| 7 | 6 | exbii 1849 | . . . . 5 ⊢ (∃𝑥 𝑧(𝐴 ∪ 𝐵)𝑥 ↔ ∃𝑥(𝑧𝐴𝑥 ∨ 𝑧𝐵𝑥)) |
| 8 | 19.43 1883 | . . . . 5 ⊢ (∃𝑥(𝑧𝐴𝑥 ∨ 𝑧𝐵𝑥) ↔ (∃𝑥 𝑧𝐴𝑥 ∨ ∃𝑥 𝑧𝐵𝑥)) | |
| 9 | 7, 8 | bitr2i 276 | . . . 4 ⊢ ((∃𝑥 𝑧𝐴𝑥 ∨ ∃𝑥 𝑧𝐵𝑥) ↔ ∃𝑥 𝑧(𝐴 ∪ 𝐵)𝑥) |
| 10 | 9 | abbii 2800 | . . 3 ⊢ {𝑧 ∣ (∃𝑥 𝑧𝐴𝑥 ∨ ∃𝑥 𝑧𝐵𝑥)} = {𝑧 ∣ ∃𝑥 𝑧(𝐴 ∪ 𝐵)𝑥} |
| 11 | 5, 10 | eqtri 2756 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑧 ∣ ∃𝑥 𝑧(𝐴 ∪ 𝐵)𝑥} |
| 12 | df-dm 5631 | . . 3 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} | |
| 13 | df-dm 5631 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥} | |
| 14 | 12, 13 | uneq12i 4115 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) |
| 15 | df-dm 5631 | . 2 ⊢ dom (𝐴 ∪ 𝐵) = {𝑧 ∣ ∃𝑥 𝑧(𝐴 ∪ 𝐵)𝑥} | |
| 16 | 11, 14, 15 | 3eqtr4ri 2767 | 1 ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1541 ∃wex 1780 {cab 2711 ∪ cun 3896 class class class wbr 5095 dom cdm 5621 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-dm 5631 |
| This theorem is referenced by: rnun 6099 dmpropg 6169 dmtpop 6172 fntpg 6548 fnun 6602 frrlem14 8237 tfrlem10 8314 sbthlem5 9013 fodomr 9050 fodomfir 9221 axdc3lem4 10353 hashfun 14348 s4dom 14830 dmtrclfv 14929 strleun 17072 setsdm 17085 estrreslem2 18048 mvdco 19361 gsumzaddlem 19837 cnfldfunALT 21310 cnfldfunALTOLD 21323 noextend 27608 noextendseq 27609 nosupbday 27647 nosupbnd1 27656 nosupbnd2 27658 noinfbday 27662 noinfbnd1 27671 noinfbnd2 27673 noetasuplem4 27678 noetainflem4 27682 uhgrun 29056 upgrun 29100 umgrun 29102 vtxdun 29464 wlkp1 29662 eupthp1 30200 bnj1416 35074 fineqvac 35162 satfdm 35436 fmlasuc0 35451 fixun 35974 dmuncnvepres 38438 dfsucmap3 38499 rclexi 43735 rtrclex 43737 rtrclexi 43741 cnvrcl0 43745 dmtrcl 43747 dfrtrcl5 43749 dfrcl2 43794 dmtrclfvRP 43850 |
| Copyright terms: Public domain | W3C validator |