| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmun | Structured version Visualization version GIF version | ||
| Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmun | ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 4288 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} | |
| 2 | brun 5175 | . . . . . 6 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 3 | 2 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥 ↔ ∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) |
| 4 | 19.43 1882 | . . . . 5 ⊢ (∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥) ↔ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)) | |
| 5 | 3, 4 | bitr2i 276 | . . . 4 ⊢ ((∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥) ↔ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥) |
| 6 | 5 | abbii 2803 | . . 3 ⊢ {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 7 | 1, 6 | eqtri 2759 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 8 | df-dm 5669 | . . 3 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} | |
| 9 | df-dm 5669 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥} | |
| 10 | 8, 9 | uneq12i 4146 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) |
| 11 | df-dm 5669 | . 2 ⊢ dom (𝐴 ∪ 𝐵) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 12 | 7, 10, 11 | 3eqtr4ri 2770 | 1 ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∃wex 1779 {cab 2714 ∪ cun 3929 class class class wbr 5124 dom cdm 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-br 5125 df-dm 5669 |
| This theorem is referenced by: rnun 6139 dmpropg 6209 dmtpop 6212 fntpg 6601 fnun 6657 frrlem14 8303 wfrlem13OLD 8340 wfrlem16OLD 8343 tfrlem10 8406 sbthlem5 9106 fodomr 9147 fodomfir 9345 axdc3lem4 10472 hashfun 14460 s4dom 14943 dmtrclfv 15042 strleun 17181 setsdm 17194 estrreslem2 18155 mvdco 19431 gsumzaddlem 19907 cnfldfunALT 21335 cnfldfunALTOLD 21348 noextend 27635 noextendseq 27636 nosupbday 27674 nosupbnd1 27683 nosupbnd2 27685 noinfbday 27689 noinfbnd1 27698 noinfbnd2 27700 noetasuplem4 27705 noetainflem4 27709 uhgrun 29058 upgrun 29102 umgrun 29104 vtxdun 29466 wlkp1 29666 eupthp1 30202 bnj1416 35075 fineqvac 35133 satfdm 35396 fmlasuc0 35411 fixun 35932 rclexi 43606 rtrclex 43608 rtrclexi 43612 cnvrcl0 43616 dmtrcl 43618 dfrtrcl5 43620 dfrcl2 43665 dmtrclfvRP 43721 |
| Copyright terms: Public domain | W3C validator |