| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmun | Structured version Visualization version GIF version | ||
| Description: The domain of a union is the union of domains. Exercise 56(a) of [Enderton] p. 65. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| dmun | ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unab 4274 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} | |
| 2 | brun 5161 | . . . . . 6 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 3 | 2 | exbii 1848 | . . . . 5 ⊢ (∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥 ↔ ∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) |
| 4 | 19.43 1882 | . . . . 5 ⊢ (∃𝑥(𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥) ↔ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)) | |
| 5 | 3, 4 | bitr2i 276 | . . . 4 ⊢ ((∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥) ↔ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥) |
| 6 | 5 | abbii 2797 | . . 3 ⊢ {𝑦 ∣ (∃𝑥 𝑦𝐴𝑥 ∨ ∃𝑥 𝑦𝐵𝑥)} = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 7 | 1, 6 | eqtri 2753 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 8 | df-dm 5651 | . . 3 ⊢ dom 𝐴 = {𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} | |
| 9 | df-dm 5651 | . . 3 ⊢ dom 𝐵 = {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥} | |
| 10 | 8, 9 | uneq12i 4132 | . 2 ⊢ (dom 𝐴 ∪ dom 𝐵) = ({𝑦 ∣ ∃𝑥 𝑦𝐴𝑥} ∪ {𝑦 ∣ ∃𝑥 𝑦𝐵𝑥}) |
| 11 | df-dm 5651 | . 2 ⊢ dom (𝐴 ∪ 𝐵) = {𝑦 ∣ ∃𝑥 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 12 | 7, 10, 11 | 3eqtr4ri 2764 | 1 ⊢ dom (𝐴 ∪ 𝐵) = (dom 𝐴 ∪ dom 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∃wex 1779 {cab 2708 ∪ cun 3915 class class class wbr 5110 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-br 5111 df-dm 5651 |
| This theorem is referenced by: rnun 6121 dmpropg 6191 dmtpop 6194 fntpg 6579 fnun 6635 frrlem14 8281 tfrlem10 8358 sbthlem5 9061 fodomr 9098 fodomfir 9286 axdc3lem4 10413 hashfun 14409 s4dom 14892 dmtrclfv 14991 strleun 17134 setsdm 17147 estrreslem2 18106 mvdco 19382 gsumzaddlem 19858 cnfldfunALT 21286 cnfldfunALTOLD 21299 noextend 27585 noextendseq 27586 nosupbday 27624 nosupbnd1 27633 nosupbnd2 27635 noinfbday 27639 noinfbnd1 27648 noinfbnd2 27650 noetasuplem4 27655 noetainflem4 27659 uhgrun 29008 upgrun 29052 umgrun 29054 vtxdun 29416 wlkp1 29616 eupthp1 30152 bnj1416 35036 fineqvac 35094 satfdm 35363 fmlasuc0 35378 fixun 35904 rclexi 43611 rtrclex 43613 rtrclexi 43617 cnvrcl0 43621 dmtrcl 43623 dfrtrcl5 43625 dfrcl2 43670 dmtrclfvRP 43726 |
| Copyright terms: Public domain | W3C validator |