| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5825 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 5831 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 5629 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 {cab 2707 class class class wbr 5092 ◡ccnv 5618 dom cdm 5619 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: dmcnvcnv 5875 rncnvcnv 5876 rncoeq 5923 cnvimass 6033 cnvimarndm 6034 dminxp 6129 cnvsn0 6159 rnsnopg 6170 dmmpt 6189 dmco 6203 cores2 6208 cnvssrndm 6219 unidmrn 6227 dfdm2 6229 funimacnv 6563 foimacnv 6781 funcocnv2 6789 f1opw2 7604 cnvexg 7857 tz7.48-3 8366 fopwdom 9002 sbthlem4 9007 fodomr 9045 cnvfi 9090 fodomfir 9218 f1opwfi 9246 zorn2lem4 10393 trclublem 14902 relexpcnv 14942 unbenlem 16820 gsumpropd2lem 18553 pjdm 21614 paste 23179 hmeores 23656 icchmeo 24836 icchmeoOLD 24837 fcnvgreu 32616 ffsrn 32672 gsummpt2co 33001 tocycfvres1 33052 tocycfvres2 33053 cycpmfvlem 33054 cycpmfv3 33057 coinfliprv 34451 itg2addnclem2 37652 rncnv 38274 lnmlmic 43061 dmnonrel 43563 cnvrcl0 43598 conrel1d 43636 |
| Copyright terms: Public domain | W3C validator |