| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5836 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 5842 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 5641 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 {cab 2707 class class class wbr 5102 ◡ccnv 5630 dom cdm 5631 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: dmcnvcnv 5886 rncnvcnv 5887 rncoeq 5932 cnvimass 6042 cnvimarndm 6043 dminxp 6141 cnvsn0 6171 rnsnopg 6182 dmmpt 6201 dmco 6215 cores2 6220 cnvssrndm 6232 unidmrn 6240 dfdm2 6242 funimacnv 6581 foimacnv 6799 funcocnv2 6807 f1opw2 7624 cnvexg 7880 tz7.48-3 8389 fopwdom 9026 sbthlem4 9031 fodomr 9069 cnvfi 9117 fodomfir 9255 f1opwfi 9283 zorn2lem4 10428 trclublem 14937 relexpcnv 14977 unbenlem 16855 gsumpropd2lem 18582 pjdm 21592 paste 23157 hmeores 23634 icchmeo 24814 icchmeoOLD 24815 fcnvgreu 32570 ffsrn 32625 gsummpt2co 32961 tocycfvres1 33040 tocycfvres2 33041 cycpmfvlem 33042 cycpmfv3 33045 coinfliprv 34447 itg2addnclem2 37639 rncnv 38261 lnmlmic 43050 dmnonrel 43552 cnvrcl0 43587 conrel1d 43625 |
| Copyright terms: Public domain | W3C validator |