Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5780 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1851 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2809 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 5786 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 5590 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2777 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1783 {cab 2715 class class class wbr 5070 ◡ccnv 5579 dom cdm 5580 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: dmcnvcnv 5831 rncnvcnv 5832 rncoeq 5873 cnvimass 5978 cnvimarndm 5979 dminxp 6072 cnvsn0 6102 rnsnopg 6113 dmmpt 6132 dmco 6147 cores2 6152 cnvssrndm 6163 unidmrn 6171 dfdm2 6173 funimacnv 6499 foimacnv 6717 funcocnv2 6724 fimacnvOLD 6930 f1opw2 7502 cnvexg 7745 tz7.48-3 8245 fopwdom 8820 sbthlem4 8826 fodomr 8864 cnvfi 8924 f1opwfi 9053 zorn2lem4 10186 trclublem 14634 relexpcnv 14674 unbenlem 16537 gsumpropd2lem 18278 pjdm 20824 paste 22353 hmeores 22830 icchmeo 24010 fcnvgreu 30912 ffsrn 30966 gsummpt2co 31210 tocycfvres1 31279 tocycfvres2 31280 cycpmfvlem 31281 cycpmfv3 31284 coinfliprv 32349 itg2addnclem2 35756 rncnv 36363 lnmlmic 40829 dmnonrel 41087 cnvrcl0 41122 conrel1d 41160 |
Copyright terms: Public domain | W3C validator |