![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3388 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 3388 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5508 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1944 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2916 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 5514 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 5322 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2832 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∃wex 1875 {cab 2785 class class class wbr 4843 ◡ccnv 5311 dom cdm 5312 ran crn 5313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-cnv 5320 df-dm 5322 df-rn 5323 |
This theorem is referenced by: dmcnvcnv 5551 rncnvcnv 5552 rncoeq 5593 cnvimass 5702 cnvimarndm 5703 dminxp 5791 cnvsn0 5819 rnsnopg 5831 dmmpt 5849 dmco 5862 cores2 5867 cnvssrndm 5876 unidmrn 5884 dfdm2 5886 funimacnv 6181 foimacnv 6373 funcocnv2 6380 fimacnv 6573 f1opw2 7122 cnvexg 7347 tz7.48-3 7778 fopwdom 8310 sbthlem4 8315 fodomr 8353 f1opwfi 8512 zorn2lem4 9609 trclublem 14077 relexpcnv 14116 unbenlem 15945 gsumpropd2lem 17588 pjdm 20376 paste 21427 hmeores 21903 icchmeo 23068 fcnvgreu 29990 ffsrn 30022 gsummpt2co 30296 coinfliprv 31061 itg2addnclem2 33950 rncnv 34566 lnmlmic 38443 dmnonrel 38679 cnvrcl0 38715 conrel1d 38738 |
Copyright terms: Public domain | W3C validator |