| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3483 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 3483 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5892 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1847 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2808 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 5898 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 5694 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2775 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∃wex 1778 {cab 2713 class class class wbr 5142 ◡ccnv 5683 dom cdm 5684 ran crn 5685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-cnv 5692 df-dm 5694 df-rn 5695 |
| This theorem is referenced by: dmcnvcnv 5943 rncnvcnv 5944 rncoeq 5989 cnvimass 6099 cnvimarndm 6100 dminxp 6199 cnvsn0 6229 rnsnopg 6240 dmmpt 6259 dmco 6273 cores2 6278 cnvssrndm 6290 unidmrn 6298 dfdm2 6300 funimacnv 6646 foimacnv 6864 funcocnv2 6872 f1opw2 7689 cnvexg 7947 tz7.48-3 8485 fopwdom 9121 sbthlem4 9127 fodomr 9169 cnvfi 9217 fodomfir 9369 f1opwfi 9397 zorn2lem4 10540 trclublem 15035 relexpcnv 15075 unbenlem 16947 gsumpropd2lem 18693 pjdm 21728 paste 23303 hmeores 23780 icchmeo 24972 icchmeoOLD 24973 fcnvgreu 32684 ffsrn 32741 gsummpt2co 33052 tocycfvres1 33131 tocycfvres2 33132 cycpmfvlem 33133 cycpmfv3 33136 coinfliprv 34486 itg2addnclem2 37680 rncnv 38302 lnmlmic 43105 dmnonrel 43608 cnvrcl0 43643 conrel1d 43681 |
| Copyright terms: Public domain | W3C validator |