![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3482 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 3482 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5896 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1845 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2807 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 5902 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 5699 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2774 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1776 {cab 2712 class class class wbr 5148 ◡ccnv 5688 dom cdm 5689 ran crn 5690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 df-dm 5699 df-rn 5700 |
This theorem is referenced by: dmcnvcnv 5947 rncnvcnv 5948 rncoeq 5993 cnvimass 6102 cnvimarndm 6103 dminxp 6202 cnvsn0 6232 rnsnopg 6243 dmmpt 6262 dmco 6276 cores2 6281 cnvssrndm 6293 unidmrn 6301 dfdm2 6303 funimacnv 6649 foimacnv 6866 funcocnv2 6874 f1opw2 7688 cnvexg 7947 tz7.48-3 8483 fopwdom 9119 sbthlem4 9125 fodomr 9167 cnvfi 9215 fodomfir 9366 f1opwfi 9394 zorn2lem4 10537 trclublem 15031 relexpcnv 15071 unbenlem 16942 gsumpropd2lem 18705 pjdm 21745 paste 23318 hmeores 23795 icchmeo 24985 icchmeoOLD 24986 fcnvgreu 32690 ffsrn 32747 gsummpt2co 33034 tocycfvres1 33113 tocycfvres2 33114 cycpmfvlem 33115 cycpmfv3 33118 coinfliprv 34464 itg2addnclem2 37659 rncnv 38282 lnmlmic 43077 dmnonrel 43580 cnvrcl0 43615 conrel1d 43653 |
Copyright terms: Public domain | W3C validator |