| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3468 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 3468 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5867 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2803 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 5873 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 5669 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2770 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 {cab 2714 class class class wbr 5124 ◡ccnv 5658 dom cdm 5659 ran crn 5660 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: dmcnvcnv 5918 rncnvcnv 5919 rncoeq 5964 cnvimass 6074 cnvimarndm 6075 dminxp 6174 cnvsn0 6204 rnsnopg 6215 dmmpt 6234 dmco 6248 cores2 6253 cnvssrndm 6265 unidmrn 6273 dfdm2 6275 funimacnv 6622 foimacnv 6840 funcocnv2 6848 f1opw2 7667 cnvexg 7925 tz7.48-3 8463 fopwdom 9099 sbthlem4 9105 fodomr 9147 cnvfi 9195 fodomfir 9345 f1opwfi 9373 zorn2lem4 10518 trclublem 15019 relexpcnv 15059 unbenlem 16933 gsumpropd2lem 18662 pjdm 21672 paste 23237 hmeores 23714 icchmeo 24894 icchmeoOLD 24895 fcnvgreu 32656 ffsrn 32711 gsummpt2co 33047 tocycfvres1 33126 tocycfvres2 33127 cycpmfvlem 33128 cycpmfv3 33131 coinfliprv 34520 itg2addnclem2 37701 rncnv 38323 lnmlmic 43087 dmnonrel 43589 cnvrcl0 43624 conrel1d 43662 |
| Copyright terms: Public domain | W3C validator |