| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5821 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1849 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2798 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 5827 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 5624 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2765 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∃wex 1780 {cab 2709 class class class wbr 5089 ◡ccnv 5613 dom cdm 5614 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: dmcnvcnv 5872 rncnvcnv 5873 rncoeq 5920 cnvimass 6030 cnvimarndm 6031 dminxp 6127 cnvsn0 6157 rnsnopg 6168 dmmpt 6187 dmco 6202 cores2 6207 cnvssrndm 6218 unidmrn 6226 dfdm2 6228 funimacnv 6562 foimacnv 6780 funcocnv2 6788 f1opw2 7601 cnvexg 7854 tz7.48-3 8363 fopwdom 8998 sbthlem4 9003 fodomr 9041 cnvfi 9085 fodomfir 9212 f1opwfi 9240 zorn2lem4 10390 trclublem 14902 relexpcnv 14942 unbenlem 16820 gsumpropd2lem 18587 pjdm 21644 paste 23209 hmeores 23686 icchmeo 24865 icchmeoOLD 24866 fcnvgreu 32655 ffsrn 32711 gsummpt2co 33028 tocycfvres1 33079 tocycfvres2 33080 cycpmfvlem 33081 cycpmfv3 33084 coinfliprv 34496 itg2addnclem2 37720 rncnv 38342 lnmlmic 43129 dmnonrel 43631 cnvrcl0 43666 conrel1d 43704 |
| Copyright terms: Public domain | W3C validator |