| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
| Ref | Expression |
|---|---|
| dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 1, 2 | brcnv 5846 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
| 5 | 4 | abbii 2796 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
| 6 | dfrn2 5852 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
| 7 | df-dm 5648 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4ri 2763 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 {cab 2707 class class class wbr 5107 ◡ccnv 5637 dom cdm 5638 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: dmcnvcnv 5897 rncnvcnv 5898 rncoeq 5943 cnvimass 6053 cnvimarndm 6054 dminxp 6153 cnvsn0 6183 rnsnopg 6194 dmmpt 6213 dmco 6227 cores2 6232 cnvssrndm 6244 unidmrn 6252 dfdm2 6254 funimacnv 6597 foimacnv 6817 funcocnv2 6825 f1opw2 7644 cnvexg 7900 tz7.48-3 8412 fopwdom 9049 sbthlem4 9054 fodomr 9092 cnvfi 9140 fodomfir 9279 f1opwfi 9307 zorn2lem4 10452 trclublem 14961 relexpcnv 15001 unbenlem 16879 gsumpropd2lem 18606 pjdm 21616 paste 23181 hmeores 23658 icchmeo 24838 icchmeoOLD 24839 fcnvgreu 32597 ffsrn 32652 gsummpt2co 32988 tocycfvres1 33067 tocycfvres2 33068 cycpmfvlem 33069 cycpmfv3 33072 coinfliprv 34474 itg2addnclem2 37666 rncnv 38288 lnmlmic 43077 dmnonrel 43579 cnvrcl0 43614 conrel1d 43652 |
| Copyright terms: Public domain | W3C validator |