![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfdm4 | Structured version Visualization version GIF version |
Description: Alternate definition of domain. (Contributed by NM, 28-Dec-1996.) |
Ref | Expression |
---|---|
dfdm4 | ⊢ dom 𝐴 = ran ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . . . . 5 ⊢ 𝑦 ∈ V | |
2 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 1, 2 | brcnv 5907 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
4 | 3 | exbii 1846 | . . 3 ⊢ (∃𝑦 𝑦◡𝐴𝑥 ↔ ∃𝑦 𝑥𝐴𝑦) |
5 | 4 | abbii 2812 | . 2 ⊢ {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} |
6 | dfrn2 5913 | . 2 ⊢ ran ◡𝐴 = {𝑥 ∣ ∃𝑦 𝑦◡𝐴𝑥} | |
7 | df-dm 5710 | . 2 ⊢ dom 𝐴 = {𝑥 ∣ ∃𝑦 𝑥𝐴𝑦} | |
8 | 5, 6, 7 | 3eqtr4ri 2779 | 1 ⊢ dom 𝐴 = ran ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∃wex 1777 {cab 2717 class class class wbr 5166 ◡ccnv 5699 dom cdm 5700 ran crn 5701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 df-dm 5710 df-rn 5711 |
This theorem is referenced by: dmcnvcnv 5958 rncnvcnv 5959 rncoeq 6002 cnvimass 6111 cnvimarndm 6112 dminxp 6211 cnvsn0 6241 rnsnopg 6252 dmmpt 6271 dmco 6285 cores2 6290 cnvssrndm 6302 unidmrn 6310 dfdm2 6312 funimacnv 6659 foimacnv 6879 funcocnv2 6887 fimacnvOLD 7104 f1opw2 7705 cnvexg 7964 tz7.48-3 8500 fopwdom 9146 sbthlem4 9152 fodomr 9194 cnvfi 9243 fodomfir 9396 f1opwfi 9426 zorn2lem4 10568 trclublem 15044 relexpcnv 15084 unbenlem 16955 gsumpropd2lem 18717 pjdm 21750 paste 23323 hmeores 23800 icchmeo 24990 icchmeoOLD 24991 fcnvgreu 32691 ffsrn 32743 gsummpt2co 33031 tocycfvres1 33103 tocycfvres2 33104 cycpmfvlem 33105 cycpmfv3 33108 coinfliprv 34447 itg2addnclem2 37632 rncnv 38256 lnmlmic 43045 dmnonrel 43552 cnvrcl0 43587 conrel1d 43625 |
Copyright terms: Public domain | W3C validator |