| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > atandm | Structured version Visualization version GIF version | ||
| Description: Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
| Ref | Expression |
|---|---|
| atandm | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3927 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i})) | |
| 2 | elprg 4615 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ {-i, i} ↔ (𝐴 = -i ∨ 𝐴 = i))) | |
| 3 | 2 | notbid 318 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))) |
| 4 | neanior 3019 | . . . . 5 ⊢ ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)) | |
| 5 | 3, 4 | bitr4di 289 | . . . 4 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
| 6 | 5 | pm5.32i 574 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
| 7 | 1, 6 | bitri 275 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
| 8 | ovex 7423 | . . . 4 ⊢ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))) ∈ V | |
| 9 | df-atan 26784 | . . . 4 ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | |
| 10 | 8, 9 | dmmpti 6665 | . . 3 ⊢ dom arctan = (ℂ ∖ {-i, i}) |
| 11 | 10 | eleq2i 2821 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ 𝐴 ∈ (ℂ ∖ {-i, i})) |
| 12 | 3anass 1094 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) | |
| 13 | 7, 11, 12 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {cpr 4594 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 / cdiv 11842 2c2 12248 logclog 26470 arctancatan 26781 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-ov 7393 df-atan 26784 |
| This theorem is referenced by: atandm2 26794 atandm3 26795 atancj 26827 2efiatan 26835 tanatan 26836 dvatan 26852 |
| Copyright terms: Public domain | W3C validator |