Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > atandm | Structured version Visualization version GIF version |
Description: Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandm | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3893 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i})) | |
2 | elprg 4579 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ {-i, i} ↔ (𝐴 = -i ∨ 𝐴 = i))) | |
3 | 2 | notbid 317 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))) |
4 | neanior 3036 | . . . . 5 ⊢ ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)) | |
5 | 3, 4 | bitr4di 288 | . . . 4 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
6 | 5 | pm5.32i 574 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
7 | 1, 6 | bitri 274 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
8 | ovex 7288 | . . . 4 ⊢ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))) ∈ V | |
9 | df-atan 25922 | . . . 4 ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | |
10 | 8, 9 | dmmpti 6561 | . . 3 ⊢ dom arctan = (ℂ ∖ {-i, i}) |
11 | 10 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ 𝐴 ∈ (ℂ ∖ {-i, i})) |
12 | 3anass 1093 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) | |
13 | 7, 11, 12 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {cpr 4560 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 / cdiv 11562 2c2 11958 logclog 25615 arctancatan 25919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ov 7258 df-atan 25922 |
This theorem is referenced by: atandm2 25932 atandm3 25933 atancj 25965 2efiatan 25973 tanatan 25974 dvatan 25990 |
Copyright terms: Public domain | W3C validator |