MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgriswlk Structured version   Visualization version   GIF version

Theorem upgriswlk 28366
Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgriswlk.v 𝑉 = (Vtx‘𝐺)
upgriswlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgriswlk (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘   𝑘,𝑉

Proof of Theorem upgriswlk
StepHypRef Expression
1 upgriswlk.v . . 3 𝑉 = (Vtx‘𝐺)
2 upgriswlk.i . . 3 𝐼 = (iEdg‘𝐺)
31, 2iswlkg 28338 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
4 df-ifp 1062 . . . . . . 7 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5 dfsn2 4597 . . . . . . . . . . . . 13 {(𝑃𝑘)} = {(𝑃𝑘), (𝑃𝑘)}
6 preq2 4693 . . . . . . . . . . . . 13 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘), (𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
75, 6eqtrid 2789 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
87eqeq2d 2748 . . . . . . . . . . 11 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
98biimpa 478 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
109a1d 25 . . . . . . . . 9 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
11 eqid 2737 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
122, 11upgredginwlk 28361 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1312adantrr 715 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1413imp 408 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
15 simp-4l 781 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → 𝐺 ∈ UPGraph)
16 simpr 486 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
1716adantr 482 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
18 simpr 486 . . . . . . . . . . . . . . 15 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
1918adantl 483 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
20 fvexd 6852 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ∈ V)
21 fvexd 6852 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘(𝑘 + 1)) ∈ V)
22 neqne 2949 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2320, 21, 223jca 1128 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2423adantr 482 . . . . . . . . . . . . . . 15 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2524adantl 483 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
261, 11upgredgpr 27870 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹𝑘)))
2715, 17, 19, 25, 26syl31anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹𝑘)))
2827eqcomd 2743 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2928exp31 421 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
3014, 29mpd 15 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3130com12 32 . . . . . . . . 9 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3210, 31jaoi 855 . . . . . . . 8 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3332com12 32 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
344, 33biimtrid 241 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
35 ifpprsnss 4723 . . . . . 6 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
3634, 35impbid1 224 . . . . 5 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3736ralbidva 3170 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3837pm5.32da 580 . . 3 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
39 df-3an 1089 . . 3 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
40 df-3an 1089 . . 3 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4138, 39, 403bitr4g 314 . 2 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
423, 41bitrd 279 1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 845  if-wif 1061  w3a 1087   = wceq 1541  wcel 2106  wne 2941  wral 3062  Vcvv 3443  wss 3908  {csn 4584  {cpr 4586   class class class wbr 5103  dom cdm 5630  wf 6487  cfv 6491  (class class class)co 7349  0cc0 10984  1c1 10985   + caddc 10987  ...cfz 13352  ..^cfzo 13495  chash 14157  Word cword 14329  Vtxcvtx 27724  iEdgciedg 27725  Edgcedg 27775  UPGraphcupgr 27808  Walkscwlks 28321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-1st 7911  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-2o 8380  df-oadd 8383  df-er 8581  df-map 8700  df-pm 8701  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-dju 9770  df-card 9808  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-nn 12087  df-2 12149  df-n0 12347  df-xnn0 12419  df-z 12433  df-uz 12696  df-fz 13353  df-fzo 13496  df-hash 14158  df-word 14330  df-edg 27776  df-uhgr 27786  df-upgr 27810  df-wlks 28324
This theorem is referenced by:  upgrwlkedg  28367  upgrwlkcompim  28368  upgrwlkvtxedg  28370  upgr2wlk  28393  upgrtrls  28426  upgristrl  28427  upgrwlkdvde  28462  usgr2wlkneq  28481  isclwlkupgr  28503  uspgrn2crct  28530  wlkiswwlks1  28589  wlkiswwlks2  28597  wlkiswwlksupgr2  28599  wlk2v2e  28878  upgriseupth  28928
  Copyright terms: Public domain W3C validator