Proof of Theorem upgriswlk
Step | Hyp | Ref
| Expression |
1 | | upgriswlk.v |
. . 3
⊢ 𝑉 = (Vtx‘𝐺) |
2 | | upgriswlk.i |
. . 3
⊢ 𝐼 = (iEdg‘𝐺) |
3 | 1, 2 | iswlkg 27567 |
. 2
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))))) |
4 | | df-ifp 1063 |
. . . . . . 7
⊢
(if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) ∨ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
5 | | dfsn2 4539 |
. . . . . . . . . . . . 13
⊢ {(𝑃‘𝑘)} = {(𝑃‘𝑘), (𝑃‘𝑘)} |
6 | | preq2 4635 |
. . . . . . . . . . . . 13
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃‘𝑘), (𝑃‘𝑘)} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
7 | 5, 6 | syl5eq 2786 |
. . . . . . . . . . . 12
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃‘𝑘)} = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
8 | 7 | eqeq2d 2750 |
. . . . . . . . . . 11
⊢ ((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)} ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
9 | 8 | biimpa 480 |
. . . . . . . . . 10
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
10 | 9 | a1d 25 |
. . . . . . . . 9
⊢ (((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
11 | | eqid 2739 |
. . . . . . . . . . . . . 14
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
12 | 2, 11 | upgredginwlk 27589 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺))) |
13 | 12 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺))) |
14 | 13 | imp 410 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) |
15 | | simp-4l 783 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → 𝐺 ∈ UPGraph) |
16 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) |
17 | 16 | adantr 484 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) |
18 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
19 | 18 | adantl 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) |
20 | | fvexd 6701 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘𝑘) ∈ V) |
21 | | fvexd 6701 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘(𝑘 + 1)) ∈ V) |
22 | | neqne 2943 |
. . . . . . . . . . . . . . . . 17
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1))) |
23 | 20, 21, 22 | 3jca 1129 |
. . . . . . . . . . . . . . . 16
⊢ (¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) → ((𝑃‘𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
24 | 23 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → ((𝑃‘𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
25 | 24 | adantl 485 |
. . . . . . . . . . . . . 14
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → ((𝑃‘𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) |
26 | 1, 11 | upgredgpr 27099 |
. . . . . . . . . . . . . 14
⊢ (((𝐺 ∈ UPGraph ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ∧ ((𝑃‘𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃‘𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹‘𝑘))) |
27 | 15, 17, 19, 25, 26 | syl31anc 1374 |
. . . . . . . . . . . . 13
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹‘𝑘))) |
28 | 27 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢
(((((𝐺 ∈
UPGraph ∧ (𝐹 ∈
Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) |
29 | 28 | exp31 423 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹‘𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
30 | 14, 29 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
31 | 30 | com12 32 |
. . . . . . . . 9
⊢ ((¬
(𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
32 | 10, 31 | jaoi 856 |
. . . . . . . 8
⊢ ((((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) ∨ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
33 | 32 | com12 32 |
. . . . . . 7
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}) ∨ (¬ (𝑃‘𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
34 | 4, 33 | syl5bi 245 |
. . . . . 6
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) → (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
35 | | ifpprsnss 4665 |
. . . . . 6
⊢ ((𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} → if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) |
36 | 34, 35 | impbid1 228 |
. . . . 5
⊢ (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
37 | 36 | ralbidva 3109 |
. . . 4
⊢ ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
38 | 37 | pm5.32da 582 |
. . 3
⊢ (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
39 | | df-3an 1090 |
. . 3
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘))))) |
40 | | df-3an 1090 |
. . 3
⊢ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))})) |
41 | 38, 39, 40 | 3bitr4g 317 |
. 2
⊢ (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃‘𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘)}, {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹‘𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |
42 | 3, 41 | bitrd 282 |
1
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) |