MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgriswlk Structured version   Visualization version   GIF version

Theorem upgriswlk 29677
Description: Properties of a pair of functions to be a walk in a pseudograph. (Contributed by AV, 2-Jan-2021.) (Revised by AV, 28-Oct-2021.)
Hypotheses
Ref Expression
upgriswlk.v 𝑉 = (Vtx‘𝐺)
upgriswlk.i 𝐼 = (iEdg‘𝐺)
Assertion
Ref Expression
upgriswlk (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Distinct variable groups:   𝑘,𝐺   𝑘,𝐹   𝑘,𝐼   𝑃,𝑘   𝑘,𝑉

Proof of Theorem upgriswlk
StepHypRef Expression
1 upgriswlk.v . . 3 𝑉 = (Vtx‘𝐺)
2 upgriswlk.i . . 3 𝐼 = (iEdg‘𝐺)
31, 2iswlkg 29649 . 2 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))))
4 df-ifp 1064 . . . . . . 7 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
5 dfsn2 4661 . . . . . . . . . . . . 13 {(𝑃𝑘)} = {(𝑃𝑘), (𝑃𝑘)}
6 preq2 4759 . . . . . . . . . . . . 13 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘), (𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
75, 6eqtrid 2792 . . . . . . . . . . . 12 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
87eqeq2d 2751 . . . . . . . . . . 11 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
98biimpa 476 . . . . . . . . . 10 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
109a1d 25 . . . . . . . . 9 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
11 eqid 2740 . . . . . . . . . . . . . 14 (Edg‘𝐺) = (Edg‘𝐺)
122, 11upgredginwlk 29672 . . . . . . . . . . . . 13 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom 𝐼) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1312adantrr 716 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) → (𝑘 ∈ (0..^(♯‘𝐹)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1413imp 406 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
15 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → 𝐺 ∈ UPGraph)
16 simpr 484 . . . . . . . . . . . . . . 15 ((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
1716adantr 480 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺))
18 simpr 484 . . . . . . . . . . . . . . 15 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
1918adantl 481 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))
20 fvexd 6935 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ∈ V)
21 fvexd 6935 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃‘(𝑘 + 1)) ∈ V)
22 neqne 2954 . . . . . . . . . . . . . . . . 17 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
2320, 21, 223jca 1128 . . . . . . . . . . . . . . . 16 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2423adantr 480 . . . . . . . . . . . . . . 15 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
2524adantl 481 . . . . . . . . . . . . . 14 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
261, 11upgredgpr 29177 . . . . . . . . . . . . . 14 (((𝐺 ∈ UPGraph ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ∧ ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹𝑘)))
2715, 17, 19, 25, 26syl31anc 1373 . . . . . . . . . . . . 13 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = (𝐼‘(𝐹𝑘)))
2827eqcomd 2746 . . . . . . . . . . . 12 (((((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ (𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
2928exp31 419 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((𝐼‘(𝐹𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
3014, 29mpd 15 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3130com12 32 . . . . . . . . 9 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3210, 31jaoi 856 . . . . . . . 8 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3332com12 32 . . . . . . 7 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
344, 33biimtrid 242 . . . . . 6 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) → (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
35 ifpprsnss 4789 . . . . . 6 ((𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))} → if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))))
3634, 35impbid1 225 . . . . 5 (((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ (𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3736ralbidva 3182 . . . 4 ((𝐺 ∈ UPGraph ∧ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘))) ↔ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3837pm5.32da 578 . . 3 (𝐺 ∈ UPGraph → (((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
39 df-3an 1089 . . 3 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))))
40 df-3an 1089 . . 3 ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}) ↔ ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4138, 39, 403bitr4g 314 . 2 (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), (𝐼‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ (𝐼‘(𝐹𝑘)))) ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
423, 41bitrd 279 1 (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  if-wif 1063  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  {csn 4648  {cpr 4650   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  ...cfz 13567  ..^cfzo 13711  chash 14379  Word cword 14562  Vtxcvtx 29031  iEdgciedg 29032  Edgcedg 29082  UPGraphcupgr 29115  Walkscwlks 29632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-wlks 29635
This theorem is referenced by:  upgrwlkedg  29678  upgrwlkcompim  29679  upgrwlkvtxedg  29681  upgr2wlk  29704  upgrtrls  29737  upgristrl  29738  upgrwlkdvde  29773  usgr2wlkneq  29792  isclwlkupgr  29814  uspgrn2crct  29841  wlkiswwlks1  29900  wlkiswwlks2  29908  wlkiswwlksupgr2  29910  wlk2v2e  30189  upgriseupth  30239
  Copyright terms: Public domain W3C validator