Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrwlkupwlk Structured version   Visualization version   GIF version

Theorem upgrwlkupwlk 47310
Description: In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.)
Assertion
Ref Expression
upgrwlkupwlk ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃) β†’ 𝐹(UPWalksβ€˜πΊ)𝑃)

Proof of Theorem upgrwlkupwlk
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 wlkv 29465 . . 3 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2725 . . . . . . . . 9 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
3 eqid 2725 . . . . . . . . 9 (iEdgβ€˜πΊ) = (iEdgβ€˜πΊ)
42, 3iswlk 29463 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(Walksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))))
5 simpr1 1191 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))) β†’ 𝐹 ∈ Word dom (iEdgβ€˜πΊ))
6 simpr2 1192 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))) β†’ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ))
7 df-ifp 1061 . . . . . . . . . . . . . . . . 17 (if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) ↔ (((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}) ∨ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))))
8 dfsn2 4638 . . . . . . . . . . . . . . . . . . . . . . 23 {(π‘ƒβ€˜π‘˜)} = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜π‘˜)}
9 preq2 4735 . . . . . . . . . . . . . . . . . . . . . . 23 ((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) β†’ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜π‘˜)} = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})
108, 9eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . 22 ((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) β†’ {(π‘ƒβ€˜π‘˜)} = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})
1110eqeq2d 2736 . . . . . . . . . . . . . . . . . . . . 21 ((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) β†’ (((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)} ↔ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
1211biimpa 475 . . . . . . . . . . . . . . . . . . . 20 (((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})
1312a1d 25 . . . . . . . . . . . . . . . . . . 19 (((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}) β†’ ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
14 simpr 483 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) β†’ 𝐺 ∈ UPGraph)
15 simpl 481 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) β†’ 𝐹 ∈ Word dom (iEdgβ€˜πΊ))
16 eqid 2725 . . . . . . . . . . . . . . . . . . . . . . . 24 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
173, 16upgredginwlk 29489 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdgβ€˜πΊ)) β†’ (π‘˜ ∈ (0..^(β™―β€˜πΉ)) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)))
1814, 15, 17syl2anr 595 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) β†’ (π‘˜ ∈ (0..^(β™―β€˜πΉ)) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)))
1918imp 405 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ))
20 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) β†’ 𝐺 ∈ UPGraph)
2120adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ 𝐺 ∈ UPGraph)
2221adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) β†’ 𝐺 ∈ UPGraph)
2322adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) ∧ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ 𝐺 ∈ UPGraph)
24 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) ∧ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ))
25 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) ∧ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))
26 df-ne 2931 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)) ↔ Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)))
27 fvexd 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)) β†’ (π‘ƒβ€˜π‘˜) ∈ V)
28 fvexd 6905 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)) β†’ (π‘ƒβ€˜(π‘˜ + 1)) ∈ V)
29 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)) β†’ (π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)))
3027, 28, 293jca 1125 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)) β†’ ((π‘ƒβ€˜π‘˜) ∈ V ∧ (π‘ƒβ€˜(π‘˜ + 1)) ∈ V ∧ (π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1))))
3126, 30sylbir 234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) β†’ ((π‘ƒβ€˜π‘˜) ∈ V ∧ (π‘ƒβ€˜(π‘˜ + 1)) ∈ V ∧ (π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1))))
3231adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ ((π‘ƒβ€˜π‘˜) ∈ V ∧ (π‘ƒβ€˜(π‘˜ + 1)) ∈ V ∧ (π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1))))
3332adantl 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) ∧ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ ((π‘ƒβ€˜π‘˜) ∈ V ∧ (π‘ƒβ€˜(π‘˜ + 1)) ∈ V ∧ (π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1))))
342, 16upgredgpr 28994 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ UPGraph ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) ∧ ((π‘ƒβ€˜π‘˜) ∈ V ∧ (π‘ƒβ€˜(π‘˜ + 1)) ∈ V ∧ (π‘ƒβ€˜π‘˜) β‰  (π‘ƒβ€˜(π‘˜ + 1)))) β†’ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} = ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))
3523, 24, 25, 33, 34syl31anc 1370 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) ∧ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} = ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))
3635eqcomd 2731 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ)) ∧ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})
3736exp31 418 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ (((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) ∈ (Edgβ€˜πΊ) β†’ ((Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
3819, 37mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ ((Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
3938com12 32 . . . . . . . . . . . . . . . . . . 19 ((Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
4013, 39jaoi 855 . . . . . . . . . . . . . . . . . 18 ((((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}) ∨ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
4140com12 32 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ ((((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}) ∨ (Β¬ (π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)) ∧ {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
427, 41biimtrid 241 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ π‘˜ ∈ (0..^(β™―β€˜πΉ))) β†’ (if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
4342ralimdva 3157 . . . . . . . . . . . . . . 15 (((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
4443ex 411 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) β†’ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
4544com23 86 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ)) β†’ (βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))) β†’ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) β†’ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
46453impia 1114 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) β†’ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
4746impcom 406 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))) β†’ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})
485, 6, 473jca 1125 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜))))) β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
4948exp31 418 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐺 ∈ UPGraph β†’ ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))))
5049com23 86 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ ((𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))if-((π‘ƒβ€˜π‘˜) = (π‘ƒβ€˜(π‘˜ + 1)), ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜)}, {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))} βŠ† ((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)))) β†’ (𝐺 ∈ UPGraph β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))))
514, 50sylbid 239 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ UPGraph β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))))
5251impd 409 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ ((𝐹(Walksβ€˜πΊ)𝑃 ∧ 𝐺 ∈ UPGraph) β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
5352impcom 406 . . . . 5 (((𝐹(Walksβ€˜πΊ)𝑃 ∧ 𝐺 ∈ UPGraph) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) β†’ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))}))
542, 3isupwlk 47306 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
5554adantl 480 . . . . 5 (((𝐹(Walksβ€˜πΊ)𝑃 ∧ 𝐺 ∈ UPGraph) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) β†’ (𝐹(UPWalksβ€˜πΊ)𝑃 ↔ (𝐹 ∈ Word dom (iEdgβ€˜πΊ) ∧ 𝑃:(0...(β™―β€˜πΉ))⟢(Vtxβ€˜πΊ) ∧ βˆ€π‘˜ ∈ (0..^(β™―β€˜πΉ))((iEdgβ€˜πΊ)β€˜(πΉβ€˜π‘˜)) = {(π‘ƒβ€˜π‘˜), (π‘ƒβ€˜(π‘˜ + 1))})))
5653, 55mpbird 256 . . . 4 (((𝐹(Walksβ€˜πΊ)𝑃 ∧ 𝐺 ∈ UPGraph) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) β†’ 𝐹(UPWalksβ€˜πΊ)𝑃)
5756exp31 418 . . 3 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ UPGraph β†’ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) β†’ 𝐹(UPWalksβ€˜πΊ)𝑃)))
581, 57mpid 44 . 2 (𝐹(Walksβ€˜πΊ)𝑃 β†’ (𝐺 ∈ UPGraph β†’ 𝐹(UPWalksβ€˜πΊ)𝑃))
5958impcom 406 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walksβ€˜πΊ)𝑃) β†’ 𝐹(UPWalksβ€˜πΊ)𝑃)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845  if-wif 1060   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  Vcvv 3463   βŠ† wss 3941  {csn 4625  {cpr 4627   class class class wbr 5144  dom cdm 5673  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7413  0cc0 11133  1c1 11134   + caddc 11136  ...cfz 13511  ..^cfzo 13654  β™―chash 14316  Word cword 14491  Vtxcvtx 28848  iEdgciedg 28849  Edgcedg 28899  UPGraphcupgr 28932  Walkscwlks 29449  UPWalkscupwlks 47303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ifp 1061  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-dju 9919  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-fz 13512  df-fzo 13655  df-hash 14317  df-word 14492  df-edg 28900  df-uhgr 28910  df-upgr 28934  df-wlks 29452  df-upwlks 47304
This theorem is referenced by:  upgrwlkupwlkb  47311
  Copyright terms: Public domain W3C validator