Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  upgrwlkupwlk Structured version   Visualization version   GIF version

Theorem upgrwlkupwlk 44035
Description: In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.)
Assertion
Ref Expression
upgrwlkupwlk ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃)

Proof of Theorem upgrwlkupwlk
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 wlkv 27394 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V))
2 eqid 2821 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
3 eqid 2821 . . . . . . . . 9 (iEdg‘𝐺) = (iEdg‘𝐺)
42, 3iswlk 27392 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))))
5 simpr1 1190 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝐹 ∈ Word dom (iEdg‘𝐺))
6 simpr2 1191 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺))
7 df-ifp 1058 . . . . . . . . . . . . . . . . 17 (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ↔ (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))))
8 dfsn2 4580 . . . . . . . . . . . . . . . . . . . . . . 23 {(𝑃𝑘)} = {(𝑃𝑘), (𝑃𝑘)}
9 preq2 4670 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘), (𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
108, 9syl5eq 2868 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → {(𝑃𝑘)} = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
1110eqeq2d 2832 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃𝑘) = (𝑃‘(𝑘 + 1)) → (((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)} ↔ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
1211biimpa 479 . . . . . . . . . . . . . . . . . . . 20 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
1312a1d 25 . . . . . . . . . . . . . . . . . . 19 (((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) → ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
14 simpr 487 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) → 𝐺 ∈ UPGraph)
15 simpl 485 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → 𝐹 ∈ Word dom (iEdg‘𝐺))
16 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . 24 (Edg‘𝐺) = (Edg‘𝐺)
173, 16upgredginwlk 27417 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1814, 15, 17syl2anr 598 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) → (𝑘 ∈ (0..^(♯‘𝐹)) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)))
1918imp 409 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺))
20 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) → 𝐺 ∈ UPGraph)
2120adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → 𝐺 ∈ UPGraph)
2221adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) → 𝐺 ∈ UPGraph)
2322adantr 483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → 𝐺 ∈ UPGraph)
24 simplr 767 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺))
25 simprr 771 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))
26 df-ne 3017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) ↔ ¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)))
27 fvexd 6685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ∈ V)
28 fvexd 6685 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃‘(𝑘 + 1)) ∈ V)
29 id 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))
3027, 28, 293jca 1124 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3126, 30sylbir 237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3231adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
3332adantl 484 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1))))
342, 16upgredgpr 26927 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐺 ∈ UPGraph ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) ∧ ((𝑃𝑘) ∈ V ∧ (𝑃‘(𝑘 + 1)) ∈ V ∧ (𝑃𝑘) ≠ (𝑃‘(𝑘 + 1)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑘)))
3523, 24, 25, 33, 34syl31anc 1369 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → {(𝑃𝑘), (𝑃‘(𝑘 + 1))} = ((iEdg‘𝐺)‘(𝐹𝑘)))
3635eqcomd 2827 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺)) ∧ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
3736exp31 422 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (((iEdg‘𝐺)‘(𝐹𝑘)) ∈ (Edg‘𝐺) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
3819, 37mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
3938com12 32 . . . . . . . . . . . . . . . . . . 19 ((¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4013, 39jaoi 853 . . . . . . . . . . . . . . . . . 18 ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4140com12 32 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → ((((𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}) ∨ (¬ (𝑃𝑘) = (𝑃‘(𝑘 + 1)) ∧ {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
427, 41syl5bi 244 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) ∧ 𝑘 ∈ (0..^(♯‘𝐹))) → (if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4342ralimdva 3177 . . . . . . . . . . . . . . 15 (((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) ∧ ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4443ex 415 . . . . . . . . . . . . . 14 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
4544com23 86 . . . . . . . . . . . . 13 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺)) → (∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))) → (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) → ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
46453impia 1113 . . . . . . . . . . . 12 ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) → ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4746impcom 410 . . . . . . . . . . 11 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})
485, 6, 473jca 1124 . . . . . . . . . 10 ((((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) ∧ 𝐺 ∈ UPGraph) ∧ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘))))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
4948exp31 422 . . . . . . . . 9 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐺 ∈ UPGraph → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
5049com23 86 . . . . . . . 8 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))if-((𝑃𝑘) = (𝑃‘(𝑘 + 1)), ((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘)}, {(𝑃𝑘), (𝑃‘(𝑘 + 1))} ⊆ ((iEdg‘𝐺)‘(𝐹𝑘)))) → (𝐺 ∈ UPGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
514, 50sylbid 242 . . . . . . 7 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))))
5251impd 413 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → ((𝐹(Walks‘𝐺)𝑃𝐺 ∈ UPGraph) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5352impcom 410 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐺 ∈ UPGraph) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))}))
542, 3isupwlk 44031 . . . . . 6 ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5554adantl 484 . . . . 5 (((𝐹(Walks‘𝐺)𝑃𝐺 ∈ UPGraph) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ 𝑃:(0...(♯‘𝐹))⟶(Vtx‘𝐺) ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))((iEdg‘𝐺)‘(𝐹𝑘)) = {(𝑃𝑘), (𝑃‘(𝑘 + 1))})))
5653, 55mpbird 259 . . . 4 (((𝐹(Walks‘𝐺)𝑃𝐺 ∈ UPGraph) ∧ (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) → 𝐹(UPWalks‘𝐺)𝑃)
5756exp31 422 . . 3 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → ((𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V) → 𝐹(UPWalks‘𝐺)𝑃)))
581, 57mpid 44 . 2 (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ UPGraph → 𝐹(UPWalks‘𝐺)𝑃))
5958impcom 410 1 ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  if-wif 1057  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  wss 3936  {csn 4567  {cpr 4569   class class class wbr 5066  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  ...cfz 12893  ..^cfzo 13034  chash 13691  Word cword 13862  Vtxcvtx 26781  iEdgciedg 26782  Edgcedg 26832  UPGraphcupgr 26865  Walkscwlks 27378  UPWalkscupwlks 44028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-wlks 27381  df-upwlks 44029
This theorem is referenced by:  upgrwlkupwlkb  44036
  Copyright terms: Public domain W3C validator