MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprmpweqnn Structured version   Visualization version   GIF version

Theorem dvdsprmpweqnn 16584
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 12623 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2 dvdsprmpweq 16583 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
31, 2syl3an2 1163 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
43imp 407 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
5 df-n0 12234 . . . . . 6 0 = (ℕ ∪ {0})
65rexeqi 3346 . . . . 5 (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃𝑛))
7 rexun 4129 . . . . 5 (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃𝑛)))
86, 7bitri 274 . . . 4 (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃𝑛)))
9 0z 12330 . . . . . . 7 0 ∈ ℤ
10 oveq2 7279 . . . . . . . . 9 (𝑛 = 0 → (𝑃𝑛) = (𝑃↑0))
1110eqeq2d 2751 . . . . . . . 8 (𝑛 = 0 → (𝐴 = (𝑃𝑛) ↔ 𝐴 = (𝑃↑0)))
1211rexsng 4616 . . . . . . 7 (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃𝑛) ↔ 𝐴 = (𝑃↑0)))
139, 12ax-mp 5 . . . . . 6 (∃𝑛 ∈ {0}𝐴 = (𝑃𝑛) ↔ 𝐴 = (𝑃↑0))
14 prmnn 16377 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1514nncnd 11989 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1615exp0d 13856 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (𝑃↑0) = 1)
17163ad2ant1 1132 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1)
1817eqeq2d 2751 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1))
19 eluz2b3 12661 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
20 eqneqall 2956 . . . . . . . . . . . 12 (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2120com12 32 . . . . . . . . . . 11 (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2219, 21simplbiim 505 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
23223ad2ant2 1133 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2418, 23sylbid 239 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2524com12 32 . . . . . . 7 (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2625impd 411 . . . . . 6 (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
2713, 26sylbi 216 . . . . 5 (∃𝑛 ∈ {0}𝐴 = (𝑃𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
2827jao1i 855 . . . 4 ((∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
298, 28sylbi 216 . . 3 (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
304, 29mpcom 38 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))
3130ex 413 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1542  wcel 2110  wne 2945  wrex 3067  cun 3890  {csn 4567   class class class wbr 5079  cfv 6432  (class class class)co 7271  0cc0 10872  1c1 10873  cn 11973  2c2 12028  0cn0 12233  cz 12319  cuz 12581  cexp 13780  cdvds 15961  cprime 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-q 12688  df-rp 12730  df-fz 13239  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200  df-prm 16375  df-pc 16536
This theorem is referenced by:  difsqpwdvds  16586  lighneallem4  45031
  Copyright terms: Public domain W3C validator