| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsprmpweqnn | Structured version Visualization version GIF version | ||
| Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| dvdsprmpweqnn | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12896 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
| 2 | dvdsprmpweq 16902 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | |
| 3 | 1, 2 | syl3an2 1164 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
| 4 | 3 | imp 406 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
| 5 | df-n0 12500 | . . . . . 6 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 6 | 5 | rexeqi 3304 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛)) |
| 7 | rexun 4171 | . . . . 5 ⊢ (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) |
| 9 | 0z 12597 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 10 | oveq2 7411 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑃↑𝑛) = (𝑃↑0)) | |
| 11 | 10 | eqeq2d 2746 | . . . . . . . 8 ⊢ (𝑛 = 0 → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
| 12 | 11 | rexsng 4652 | . . . . . . 7 ⊢ (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
| 13 | 9, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0)) |
| 14 | prmnn 16691 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 15 | 14 | nncnd 12254 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
| 16 | 15 | exp0d 14156 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1) |
| 18 | 17 | eqeq2d 2746 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1)) |
| 19 | eluz2b3 12936 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) | |
| 20 | eqneqall 2943 | . . . . . . . . . . . 12 ⊢ (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) | |
| 21 | 20 | com12 32 | . . . . . . . . . . 11 ⊢ (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 22 | 19, 21 | simplbiim 504 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 24 | 18, 23 | sylbid 240 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 25 | 24 | com12 32 | . . . . . . 7 ⊢ (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 26 | 25 | impd 410 | . . . . . 6 ⊢ (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 27 | 13, 26 | sylbi 217 | . . . . 5 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 28 | 27 | jao1i 858 | . . . 4 ⊢ ((∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 29 | 8, 28 | sylbi 217 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 30 | 4, 29 | mpcom 38 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)) |
| 31 | 30 | ex 412 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∪ cun 3924 {csn 4601 class class class wbr 5119 ‘cfv 6530 (class class class)co 7403 0cc0 11127 1c1 11128 ℕcn 12238 2c2 12293 ℕ0cn0 12499 ℤcz 12586 ℤ≥cuz 12850 ↑cexp 14077 ∥ cdvds 16270 ℙcprime 16688 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-q 12963 df-rp 13007 df-fz 13523 df-fl 13807 df-mod 13885 df-seq 14018 df-exp 14078 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-dvds 16271 df-gcd 16512 df-prm 16689 df-pc 16855 |
| This theorem is referenced by: difsqpwdvds 16905 lighneallem4 47572 |
| Copyright terms: Public domain | W3C validator |