Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsprmpweqnn | Structured version Visualization version GIF version |
Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
Ref | Expression |
---|---|
dvdsprmpweqnn | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12624 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
2 | dvdsprmpweq 16585 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | |
3 | 1, 2 | syl3an2 1163 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
4 | 3 | imp 407 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
5 | df-n0 12234 | . . . . . 6 ⊢ ℕ0 = (ℕ ∪ {0}) | |
6 | 5 | rexeqi 3347 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛)) |
7 | rexun 4124 | . . . . 5 ⊢ (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) | |
8 | 6, 7 | bitri 274 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) |
9 | 0z 12330 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
10 | oveq2 7283 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑃↑𝑛) = (𝑃↑0)) | |
11 | 10 | eqeq2d 2749 | . . . . . . . 8 ⊢ (𝑛 = 0 → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
12 | 11 | rexsng 4610 | . . . . . . 7 ⊢ (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
13 | 9, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0)) |
14 | prmnn 16379 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
15 | 14 | nncnd 11989 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
16 | 15 | exp0d 13858 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
17 | 16 | 3ad2ant1 1132 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1) |
18 | 17 | eqeq2d 2749 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1)) |
19 | eluz2b3 12662 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) | |
20 | eqneqall 2954 | . . . . . . . . . . . 12 ⊢ (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) | |
21 | 20 | com12 32 | . . . . . . . . . . 11 ⊢ (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
22 | 19, 21 | simplbiim 505 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
23 | 22 | 3ad2ant2 1133 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
24 | 18, 23 | sylbid 239 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
25 | 24 | com12 32 | . . . . . . 7 ⊢ (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
26 | 25 | impd 411 | . . . . . 6 ⊢ (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
27 | 13, 26 | sylbi 216 | . . . . 5 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
28 | 27 | jao1i 855 | . . . 4 ⊢ ((∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
29 | 8, 28 | sylbi 216 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
30 | 4, 29 | mpcom 38 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)) |
31 | 30 | ex 413 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∃wrex 3065 ∪ cun 3885 {csn 4561 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤcz 12319 ℤ≥cuz 12582 ↑cexp 13782 ∥ cdvds 15963 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fz 13240 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-prm 16377 df-pc 16538 |
This theorem is referenced by: difsqpwdvds 16588 lighneallem4 45062 |
Copyright terms: Public domain | W3C validator |