Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdsprmpweqnn Structured version   Visualization version   GIF version

Theorem dvdsprmpweqnn 16210
 Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.)
Assertion
Ref Expression
dvdsprmpweqnn ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
Distinct variable groups:   𝐴,𝑛   𝑛,𝑁   𝑃,𝑛

Proof of Theorem dvdsprmpweqnn
StepHypRef Expression
1 eluz2nn 12272 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
2 dvdsprmpweq 16209 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
31, 2syl3an2 1161 . . . 4 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛)))
43imp 410 . . 3 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛))
5 df-n0 11886 . . . . . 6 0 = (ℕ ∪ {0})
65rexeqi 3391 . . . . 5 (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃𝑛))
7 rexun 4141 . . . . 5 (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃𝑛)))
86, 7bitri 278 . . . 4 (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃𝑛)))
9 0z 11980 . . . . . . 7 0 ∈ ℤ
10 oveq2 7148 . . . . . . . . 9 (𝑛 = 0 → (𝑃𝑛) = (𝑃↑0))
1110eqeq2d 2833 . . . . . . . 8 (𝑛 = 0 → (𝐴 = (𝑃𝑛) ↔ 𝐴 = (𝑃↑0)))
1211rexsng 4588 . . . . . . 7 (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃𝑛) ↔ 𝐴 = (𝑃↑0)))
139, 12ax-mp 5 . . . . . 6 (∃𝑛 ∈ {0}𝐴 = (𝑃𝑛) ↔ 𝐴 = (𝑃↑0))
14 prmnn 16007 . . . . . . . . . . . . 13 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
1514nncnd 11641 . . . . . . . . . . . 12 (𝑃 ∈ ℙ → 𝑃 ∈ ℂ)
1615exp0d 13500 . . . . . . . . . . 11 (𝑃 ∈ ℙ → (𝑃↑0) = 1)
17163ad2ant1 1130 . . . . . . . . . 10 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1)
1817eqeq2d 2833 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1))
19 eluz2b3 12310 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
20 eqneqall 3022 . . . . . . . . . . . 12 (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2120com12 32 . . . . . . . . . . 11 (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2219, 21simplbiim 508 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
23223ad2ant2 1131 . . . . . . . . 9 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2418, 23sylbid 243 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2524com12 32 . . . . . . 7 (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))))
2625impd 414 . . . . . 6 (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
2713, 26sylbi 220 . . . . 5 (∃𝑛 ∈ {0}𝐴 = (𝑃𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
2827jao1i 855 . . . 4 ((∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
298, 28sylbi 220 . . 3 (∃𝑛 ∈ ℕ0 𝐴 = (𝑃𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
304, 29mpcom 38 . 2 (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛))
3130ex 416 1 ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  ∃wrex 3131   ∪ cun 3906  {csn 4539   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527  ℕcn 11625  2c2 11680  ℕ0cn0 11885  ℤcz 11969  ℤ≥cuz 12231  ↑cexp 13425   ∥ cdvds 15598  ℙcprime 16004 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-2o 8090  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-dvds 15599  df-gcd 15833  df-prm 16005  df-pc 16163 This theorem is referenced by:  difsqpwdvds  16212  lighneallem4  44067
 Copyright terms: Public domain W3C validator