| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvdsprmpweqnn | Structured version Visualization version GIF version | ||
| Description: If an integer greater than 1 divides a prime power, it is a (proper) prime power. (Contributed by AV, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| dvdsprmpweqnn | ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2nn 12783 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
| 2 | dvdsprmpweq 16793 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) | |
| 3 | 1, 2 | syl3an2 1164 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛))) |
| 4 | 3 | imp 406 | . . 3 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛)) |
| 5 | df-n0 12379 | . . . . . 6 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 6 | 5 | rexeqi 3291 | . . . . 5 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ ∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛)) |
| 7 | rexun 4146 | . . . . 5 ⊢ (∃𝑛 ∈ (ℕ ∪ {0})𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) | |
| 8 | 6, 7 | bitri 275 | . . . 4 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) ↔ (∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛))) |
| 9 | 0z 12476 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 10 | oveq2 7354 | . . . . . . . . 9 ⊢ (𝑛 = 0 → (𝑃↑𝑛) = (𝑃↑0)) | |
| 11 | 10 | eqeq2d 2742 | . . . . . . . 8 ⊢ (𝑛 = 0 → (𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
| 12 | 11 | rexsng 4629 | . . . . . . 7 ⊢ (0 ∈ ℤ → (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0))) |
| 13 | 9, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) ↔ 𝐴 = (𝑃↑0)) |
| 14 | prmnn 16582 | . . . . . . . . . . . . 13 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℕ) | |
| 15 | 14 | nncnd 12138 | . . . . . . . . . . . 12 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ ℂ) |
| 16 | 15 | exp0d 14044 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ ℙ → (𝑃↑0) = 1) |
| 17 | 16 | 3ad2ant1 1133 | . . . . . . . . . 10 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝑃↑0) = 1) |
| 18 | 17 | eqeq2d 2742 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) ↔ 𝐴 = 1)) |
| 19 | eluz2b3 12817 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ (ℤ≥‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1)) | |
| 20 | eqneqall 2939 | . . . . . . . . . . . 12 ⊢ (𝐴 = 1 → (𝐴 ≠ 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) | |
| 21 | 20 | com12 32 | . . . . . . . . . . 11 ⊢ (𝐴 ≠ 1 → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 22 | 19, 21 | simplbiim 504 | . . . . . . . . . 10 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = 1 → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 24 | 18, 23 | sylbid 240 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 = (𝑃↑0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 25 | 24 | com12 32 | . . . . . . 7 ⊢ (𝐴 = (𝑃↑0) → ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)))) |
| 26 | 25 | impd 410 | . . . . . 6 ⊢ (𝐴 = (𝑃↑0) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 27 | 13, 26 | sylbi 217 | . . . . 5 ⊢ (∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 28 | 27 | jao1i 858 | . . . 4 ⊢ ((∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛) ∨ ∃𝑛 ∈ {0}𝐴 = (𝑃↑𝑛)) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 29 | 8, 28 | sylbi 217 | . . 3 ⊢ (∃𝑛 ∈ ℕ0 𝐴 = (𝑃↑𝑛) → (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| 30 | 4, 29 | mpcom 38 | . 2 ⊢ (((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) ∧ 𝐴 ∥ (𝑃↑𝑁)) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛)) |
| 31 | 30 | ex 412 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝐴 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℕ0) → (𝐴 ∥ (𝑃↑𝑁) → ∃𝑛 ∈ ℕ 𝐴 = (𝑃↑𝑛))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∃wrex 3056 ∪ cun 3900 {csn 4576 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 0cc0 11003 1c1 11004 ℕcn 12122 2c2 12177 ℕ0cn0 12378 ℤcz 12465 ℤ≥cuz 12729 ↑cexp 13965 ∥ cdvds 16160 ℙcprime 16579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-3 12186 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-fz 13405 df-fl 13693 df-mod 13771 df-seq 13906 df-exp 13966 df-cj 15003 df-re 15004 df-im 15005 df-sqrt 15139 df-abs 15140 df-dvds 16161 df-gcd 16403 df-prm 16580 df-pc 16746 |
| This theorem is referenced by: difsqpwdvds 16796 lighneallem4 47640 |
| Copyright terms: Public domain | W3C validator |