MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0mulcl Structured version   Visualization version   GIF version

Theorem nn0mulcl 12589
Description: Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0mulcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)

Proof of Theorem nn0mulcl
StepHypRef Expression
1 nnsscn 12298 . 2 ℕ ⊆ ℂ
2 id 22 . . 3 (ℕ ⊆ ℂ → ℕ ⊆ ℂ)
3 df-n0 12554 . . 3 0 = (ℕ ∪ {0})
4 nnmulcl 12317 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℕ)
54adantl 481 . . 3 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 · 𝑁) ∈ ℕ)
62, 3, 5un0mulcl 12587 . 2 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℕ0)
71, 6mpan 689 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  wss 3976  (class class class)co 7448  cc 11182   · cmul 11189  cn 12293  0cn0 12553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-nn 12294  df-n0 12554
This theorem is referenced by:  nn0mulcli  12591  nn0mulcld  12618  zmulcl  12692  nn0expcl  14126  expmul  14158  expmulnbnd  14284  iseraltlem2  15731  iseraltlem3  15732  fprodnn0cl  16005  nn0risefaccl  16070  crth  16825  iserodd  16882  vdwlem8  17035  smndex2dlinvh  18952  nn0srg  21478  elqaalem2  26380  atantayl3  27000  leibpilem2  27002  leibpi  27003  leibpisum  27004  log2cnv  27005  log2tlbnd  27006  log2ublem2  27008  log2ub  27010  basellem3  27144  chtublem  27273  bcmax  27340  bcp1ctr  27341  bclbnd  27342  dchrisumlem1  27551  nn0xmulclb  32778  fac2xp3  42196
  Copyright terms: Public domain W3C validator