![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0mulcl | Structured version Visualization version GIF version |
Description: Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
nn0mulcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11480 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | id 22 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
3 | df-n0 11735 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
4 | nnmulcl 11498 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) ∈ ℕ) | |
5 | 4 | adantl 482 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 · 𝑁) ∈ ℕ) |
6 | 2, 3, 5 | un0mulcl 11768 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 · 𝑁) ∈ ℕ0) |
7 | 1, 6 | mpan 686 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 · 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2079 ⊆ wss 3854 (class class class)co 7007 ℂcc 10370 · cmul 10377 ℕcn 11475 ℕ0cn0 11734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-ov 7010 df-om 7428 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-pnf 10512 df-mnf 10513 df-ltxr 10515 df-nn 11476 df-n0 11735 |
This theorem is referenced by: nn0mulcli 11772 nn0mulcld 11797 zmulcl 11869 nn0expcl 13281 expmul 13312 expmulnbnd 13434 iseraltlem2 14861 iseraltlem3 14862 fprodnn0cl 15132 nn0risefaccl 15197 crth 15932 iserodd 15989 vdwlem8 16141 nn0srg 20285 elqaalem2 24580 atantayl3 25186 leibpilem2 25189 leibpi 25190 leibpisum 25191 log2cnv 25192 log2tlbnd 25193 log2ublem2 25195 log2ub 25197 basellem3 25330 chtublem 25457 bcmax 25524 bcp1ctr 25525 bclbnd 25526 dchrisumlem1 25735 nn0xmulclb 30156 |
Copyright terms: Public domain | W3C validator |