Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corcltrcl Structured version   Visualization version   GIF version

Theorem corcltrcl 42099
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
corcltrcl (r* ∘ t+) = t*

Proof of Theorem corcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 42036 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dftrcl3 42080 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dfrtrcl3 42093 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 prex 5390 . 2 {0, 1} ∈ V
5 nnex 12164 . 2 ℕ ∈ V
6 df-n0 12419 . . 3 0 = (ℕ ∪ {0})
7 uncom 4114 . . 3 (ℕ ∪ {0}) = ({0} ∪ ℕ)
8 df-pr 4590 . . . . 5 {0, 1} = ({0} ∪ {1})
98uneq1i 4120 . . . 4 ({0, 1} ∪ ℕ) = (({0} ∪ {1}) ∪ ℕ)
10 unass 4127 . . . 4 (({0} ∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ))
11 1nn 12169 . . . . . . 7 1 ∈ ℕ
12 snssi 4769 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn1 4141 . . . . . 6 ({1} ⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ)
1513, 14mpbi 229 . . . . 5 ({1} ∪ ℕ) = ℕ
1615uneq2i 4121 . . . 4 ({0} ∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ)
179, 10, 163eqtrri 2766 . . 3 ({0} ∪ ℕ) = ({0, 1} ∪ ℕ)
186, 7, 173eqtri 2765 . 2 0 = ({0, 1} ∪ ℕ)
19 oveq2 7366 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 5001 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {0, 1} (𝑑𝑟𝑖)
21 ss2iun 4973 . . . 4 (∀𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
22 relexp1g 14917 . . . . . . . 8 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2322elv 3450 . . . . . . 7 (𝑑𝑟1) = 𝑑
24 oveq2 7366 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
2524ssiun2s 5009 . . . . . . . 8 (1 ∈ ℕ → (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗))
2611, 25ax-mp 5 . . . . . . 7 (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2723, 26eqsstrri 3980 . . . . . 6 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2827a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗))
29 ovex 7391 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
305, 29iunex 7902 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
3130a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V)
32 0nn0 12433 . . . . . . 7 0 ∈ ℕ0
33 1nn0 12434 . . . . . . 7 1 ∈ ℕ0
34 prssi 4782 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
3532, 33, 34mp2an 691 . . . . . 6 {0, 1} ⊆ ℕ0
3635sseli 3941 . . . . 5 (𝑖 ∈ {0, 1} → 𝑖 ∈ ℕ0)
3728, 31, 36relexpss1d 42065 . . . 4 (𝑖 ∈ {0, 1} → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3821, 37mprg 3067 . . 3 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
3920, 38eqsstri 3979 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
40 oveq2 7366 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
4140cbviunv 5001 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
42 relexp1g 14917 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
4330, 42ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
4441, 43eqtr4i 2764 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
45 1ex 11156 . . . . 5 1 ∈ V
4645prid2 4725 . . . 4 1 ∈ {0, 1}
47 oveq2 7366 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
4847ssiun2s 5009 . . . 4 (1 ∈ {0, 1} → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
4946, 48ax-mp 5 . . 3 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
5044, 49eqsstri 3979 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
51 c0ex 11154 . . . . . 6 0 ∈ V
5251prid1 4724 . . . . 5 0 ∈ {0, 1}
53 oveq2 7366 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
5453ssiun2s 5009 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5552, 54ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
56 ssid 3967 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
57 unss12 4143 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5855, 56, 57mp2an 691 . . 3 ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
59 iuneq1 4971 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
608, 59ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
61 iunxun 5055 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
62 oveq2 7366 . . . . . . 7 (𝑖 = 0 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0))
6351, 62iunxsn 5052 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0)
64 vex 3448 . . . . . . 7 𝑑 ∈ V
65 nnssnn0 12421 . . . . . . 7 ℕ ⊆ ℕ0
66 inelcm 4425 . . . . . . . 8 ((1 ∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠ ∅)
6746, 11, 66mp2an 691 . . . . . . 7 ({0, 1} ∩ ℕ) ≠ ∅
68 iunrelexp0 42062 . . . . . . 7 ((𝑑 ∈ V ∧ ℕ ⊆ ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
6964, 65, 67, 68mp3an 1462 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
7063, 69eqtri 2761 . . . . 5 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
7145, 47iunxsn 5052 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
7243, 41eqtr4i 2764 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7371, 72eqtri 2761 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7470, 73uneq12i 4122 . . . 4 ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7560, 61, 743eqtri 2765 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
76 iunxun 5055 . . 3 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7758, 75, 763sstr4i 3988 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘)
781, 2, 3, 4, 5, 18, 39, 50, 77comptiunov2i 42066 1 (r* ∘ t+) = t*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  wne 2940  Vcvv 3444  cun 3909  cin 3910  wss 3911  c0 4283  {csn 4587  {cpr 4589   ciun 4955  ccom 5638  (class class class)co 7358  0cc0 11056  1c1 11057  cn 12158  0cn0 12418  t+ctcl 14876  t*crtcl 14877  𝑟crelexp 14910  r*crcl 42032
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-n0 12419  df-z 12505  df-uz 12769  df-seq 13913  df-trcl 14878  df-rtrcl 14879  df-relexp 14911  df-rcl 42033
This theorem is referenced by:  cortrcltrcl  42100  corclrtrcl  42101
  Copyright terms: Public domain W3C validator