| Step | Hyp | Ref
| Expression |
| 1 | | dfrcl4 43694 |
. 2
⊢ r* =
(𝑎 ∈ V ↦
∪ 𝑖 ∈ {0, 1} (𝑎↑𝑟𝑖)) |
| 2 | | dftrcl3 43738 |
. 2
⊢ t+ =
(𝑏 ∈ V ↦
∪ 𝑗 ∈ ℕ (𝑏↑𝑟𝑗)) |
| 3 | | dfrtrcl3 43751 |
. 2
⊢ t* =
(𝑐 ∈ V ↦
∪ 𝑘 ∈ ℕ0 (𝑐↑𝑟𝑘)) |
| 4 | | prex 5436 |
. 2
⊢ {0, 1}
∈ V |
| 5 | | nnex 12273 |
. 2
⊢ ℕ
∈ V |
| 6 | | df-n0 12529 |
. . 3
⊢
ℕ0 = (ℕ ∪ {0}) |
| 7 | | uncom 4157 |
. . 3
⊢ (ℕ
∪ {0}) = ({0} ∪ ℕ) |
| 8 | | df-pr 4628 |
. . . . 5
⊢ {0, 1} =
({0} ∪ {1}) |
| 9 | 8 | uneq1i 4163 |
. . . 4
⊢ ({0, 1}
∪ ℕ) = (({0} ∪ {1}) ∪ ℕ) |
| 10 | | unass 4171 |
. . . 4
⊢ (({0}
∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ)) |
| 11 | | 1nn 12278 |
. . . . . . 7
⊢ 1 ∈
ℕ |
| 12 | | snssi 4807 |
. . . . . . 7
⊢ (1 ∈
ℕ → {1} ⊆ ℕ) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢ {1}
⊆ ℕ |
| 14 | | ssequn1 4185 |
. . . . . 6
⊢ ({1}
⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ) |
| 15 | 13, 14 | mpbi 230 |
. . . . 5
⊢ ({1}
∪ ℕ) = ℕ |
| 16 | 15 | uneq2i 4164 |
. . . 4
⊢ ({0}
∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ) |
| 17 | 9, 10, 16 | 3eqtrri 2769 |
. . 3
⊢ ({0}
∪ ℕ) = ({0, 1} ∪ ℕ) |
| 18 | 6, 7, 17 | 3eqtri 2768 |
. 2
⊢
ℕ0 = ({0, 1} ∪ ℕ) |
| 19 | | oveq2 7440 |
. . . 4
⊢ (𝑘 = 𝑖 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟𝑖)) |
| 20 | 19 | cbviunv 5039 |
. . 3
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) = ∪ 𝑖 ∈ {0, 1} (𝑑↑𝑟𝑖) |
| 21 | | ss2iun 5009 |
. . . 4
⊢
(∀𝑖 ∈
{0, 1} (𝑑↑𝑟𝑖) ⊆ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) → ∪
𝑖 ∈ {0, 1} (𝑑↑𝑟𝑖) ⊆ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
| 22 | | relexp1g 15066 |
. . . . . . . 8
⊢ (𝑑 ∈ V → (𝑑↑𝑟1) =
𝑑) |
| 23 | 22 | elv 3484 |
. . . . . . 7
⊢ (𝑑↑𝑟1) =
𝑑 |
| 24 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (𝑑↑𝑟𝑗) = (𝑑↑𝑟1)) |
| 25 | 24 | ssiun2s 5047 |
. . . . . . . 8
⊢ (1 ∈
ℕ → (𝑑↑𝑟1) ⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
| 26 | 11, 25 | ax-mp 5 |
. . . . . . 7
⊢ (𝑑↑𝑟1)
⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
| 27 | 23, 26 | eqsstrri 4030 |
. . . . . 6
⊢ 𝑑 ⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
| 28 | 27 | a1i 11 |
. . . . 5
⊢ (𝑖 ∈ {0, 1} → 𝑑 ⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
| 29 | | ovex 7465 |
. . . . . . 7
⊢ (𝑑↑𝑟𝑗) ∈ V |
| 30 | 5, 29 | iunex 7994 |
. . . . . 6
⊢ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V |
| 31 | 30 | a1i 11 |
. . . . 5
⊢ (𝑖 ∈ {0, 1} → ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V) |
| 32 | | 0nn0 12543 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
| 33 | | 1nn0 12544 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 34 | | prssi 4820 |
. . . . . . 7
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
| 35 | 32, 33, 34 | mp2an 692 |
. . . . . 6
⊢ {0, 1}
⊆ ℕ0 |
| 36 | 35 | sseli 3978 |
. . . . 5
⊢ (𝑖 ∈ {0, 1} → 𝑖 ∈
ℕ0) |
| 37 | 28, 31, 36 | relexpss1d 43723 |
. . . 4
⊢ (𝑖 ∈ {0, 1} → (𝑑↑𝑟𝑖) ⊆ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
| 38 | 21, 37 | mprg 3066 |
. . 3
⊢ ∪ 𝑖 ∈ {0, 1} (𝑑↑𝑟𝑖) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
| 39 | 20, 38 | eqsstri 4029 |
. 2
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
| 40 | | oveq2 7440 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟𝑗)) |
| 41 | 40 | cbviunv 5039 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
| 42 | | relexp1g 15066 |
. . . . 5
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
| 43 | 30, 42 | ax-mp 5 |
. . . 4
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
| 44 | 41, 43 | eqtr4i 2767 |
. . 3
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) |
| 45 | | 1ex 11258 |
. . . . 5
⊢ 1 ∈
V |
| 46 | 45 | prid2 4762 |
. . . 4
⊢ 1 ∈
{0, 1} |
| 47 | | oveq2 7440 |
. . . . 5
⊢ (𝑖 = 1 → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1)) |
| 48 | 47 | ssiun2s 5047 |
. . . 4
⊢ (1 ∈
{0, 1} → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) ⊆
∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
| 49 | 46, 48 | ax-mp 5 |
. . 3
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) ⊆
∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
| 50 | 44, 49 | eqsstri 4029 |
. 2
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
| 51 | | c0ex 11256 |
. . . . . 6
⊢ 0 ∈
V |
| 52 | 51 | prid1 4761 |
. . . . 5
⊢ 0 ∈
{0, 1} |
| 53 | | oveq2 7440 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟0)) |
| 54 | 53 | ssiun2s 5047 |
. . . . 5
⊢ (0 ∈
{0, 1} → (𝑑↑𝑟0) ⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘)) |
| 55 | 52, 54 | ax-mp 5 |
. . . 4
⊢ (𝑑↑𝑟0)
⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) |
| 56 | | ssid 4005 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
| 57 | | unss12 4187 |
. . . 4
⊢ (((𝑑↑𝑟0)
⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∧ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → ((𝑑↑𝑟0) ∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) ⊆ (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
| 58 | 55, 56, 57 | mp2an 692 |
. . 3
⊢ ((𝑑↑𝑟0)
∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) ⊆ (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
| 59 | | iuneq1 5007 |
. . . . 5
⊢ ({0, 1} =
({0} ∪ {1}) → ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
| 60 | 8, 59 | ax-mp 5 |
. . . 4
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
| 61 | | iunxun 5093 |
. . . 4
⊢ ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ∪ ∪
𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
| 62 | | oveq2 7440 |
. . . . . . 7
⊢ (𝑖 = 0 → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0)) |
| 63 | 51, 62 | iunxsn 5090 |
. . . . . 6
⊢ ∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0) |
| 64 | | vex 3483 |
. . . . . . 7
⊢ 𝑑 ∈ V |
| 65 | | nnssnn0 12531 |
. . . . . . 7
⊢ ℕ
⊆ ℕ0 |
| 66 | | inelcm 4464 |
. . . . . . . 8
⊢ ((1
∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠
∅) |
| 67 | 46, 11, 66 | mp2an 692 |
. . . . . . 7
⊢ ({0, 1}
∩ ℕ) ≠ ∅ |
| 68 | | iunrelexp0 43720 |
. . . . . . 7
⊢ ((𝑑 ∈ V ∧ ℕ ⊆
ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0) = (𝑑↑𝑟0)) |
| 69 | 64, 65, 67, 68 | mp3an 1462 |
. . . . . 6
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0) = (𝑑↑𝑟0) |
| 70 | 63, 69 | eqtri 2764 |
. . . . 5
⊢ ∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (𝑑↑𝑟0) |
| 71 | 45, 47 | iunxsn 5090 |
. . . . . 6
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) |
| 72 | 43, 41 | eqtr4i 2767 |
. . . . . 6
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
| 73 | 71, 72 | eqtri 2764 |
. . . . 5
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
| 74 | 70, 73 | uneq12i 4165 |
. . . 4
⊢ (∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ∪ ∪
𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) = ((𝑑↑𝑟0) ∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
| 75 | 60, 61, 74 | 3eqtri 2768 |
. . 3
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ((𝑑↑𝑟0) ∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
| 76 | | iunxun 5093 |
. . 3
⊢ ∪ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑↑𝑟𝑘) = (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
| 77 | 58, 75, 76 | 3sstr4i 4034 |
. 2
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ({0, 1} ∪
ℕ)(𝑑↑𝑟𝑘) |
| 78 | 1, 2, 3, 4, 5, 18,
39, 50, 77 | comptiunov2i 43724 |
1
⊢ (r*
∘ t+) = t* |