Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corcltrcl Structured version   Visualization version   GIF version

Theorem corcltrcl 43701
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
corcltrcl (r* ∘ t+) = t*

Proof of Theorem corcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 43638 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dftrcl3 43682 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dfrtrcl3 43695 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 prex 5452 . 2 {0, 1} ∈ V
5 nnex 12299 . 2 ℕ ∈ V
6 df-n0 12554 . . 3 0 = (ℕ ∪ {0})
7 uncom 4181 . . 3 (ℕ ∪ {0}) = ({0} ∪ ℕ)
8 df-pr 4651 . . . . 5 {0, 1} = ({0} ∪ {1})
98uneq1i 4187 . . . 4 ({0, 1} ∪ ℕ) = (({0} ∪ {1}) ∪ ℕ)
10 unass 4195 . . . 4 (({0} ∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ))
11 1nn 12304 . . . . . . 7 1 ∈ ℕ
12 snssi 4833 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn1 4209 . . . . . 6 ({1} ⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ)
1513, 14mpbi 230 . . . . 5 ({1} ∪ ℕ) = ℕ
1615uneq2i 4188 . . . 4 ({0} ∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ)
179, 10, 163eqtrri 2773 . . 3 ({0} ∪ ℕ) = ({0, 1} ∪ ℕ)
186, 7, 173eqtri 2772 . 2 0 = ({0, 1} ∪ ℕ)
19 oveq2 7456 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 5063 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {0, 1} (𝑑𝑟𝑖)
21 ss2iun 5033 . . . 4 (∀𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
22 relexp1g 15075 . . . . . . . 8 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2322elv 3493 . . . . . . 7 (𝑑𝑟1) = 𝑑
24 oveq2 7456 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
2524ssiun2s 5071 . . . . . . . 8 (1 ∈ ℕ → (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗))
2611, 25ax-mp 5 . . . . . . 7 (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2723, 26eqsstrri 4044 . . . . . 6 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2827a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗))
29 ovex 7481 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
305, 29iunex 8009 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
3130a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V)
32 0nn0 12568 . . . . . . 7 0 ∈ ℕ0
33 1nn0 12569 . . . . . . 7 1 ∈ ℕ0
34 prssi 4846 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
3532, 33, 34mp2an 691 . . . . . 6 {0, 1} ⊆ ℕ0
3635sseli 4004 . . . . 5 (𝑖 ∈ {0, 1} → 𝑖 ∈ ℕ0)
3728, 31, 36relexpss1d 43667 . . . 4 (𝑖 ∈ {0, 1} → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3821, 37mprg 3073 . . 3 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
3920, 38eqsstri 4043 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
40 oveq2 7456 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
4140cbviunv 5063 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
42 relexp1g 15075 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
4330, 42ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
4441, 43eqtr4i 2771 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
45 1ex 11286 . . . . 5 1 ∈ V
4645prid2 4788 . . . 4 1 ∈ {0, 1}
47 oveq2 7456 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
4847ssiun2s 5071 . . . 4 (1 ∈ {0, 1} → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
4946, 48ax-mp 5 . . 3 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
5044, 49eqsstri 4043 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
51 c0ex 11284 . . . . . 6 0 ∈ V
5251prid1 4787 . . . . 5 0 ∈ {0, 1}
53 oveq2 7456 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
5453ssiun2s 5071 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5552, 54ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
56 ssid 4031 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
57 unss12 4211 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5855, 56, 57mp2an 691 . . 3 ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
59 iuneq1 5031 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
608, 59ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
61 iunxun 5117 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
62 oveq2 7456 . . . . . . 7 (𝑖 = 0 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0))
6351, 62iunxsn 5114 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0)
64 vex 3492 . . . . . . 7 𝑑 ∈ V
65 nnssnn0 12556 . . . . . . 7 ℕ ⊆ ℕ0
66 inelcm 4488 . . . . . . . 8 ((1 ∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠ ∅)
6746, 11, 66mp2an 691 . . . . . . 7 ({0, 1} ∩ ℕ) ≠ ∅
68 iunrelexp0 43664 . . . . . . 7 ((𝑑 ∈ V ∧ ℕ ⊆ ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
6964, 65, 67, 68mp3an 1461 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
7063, 69eqtri 2768 . . . . 5 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
7145, 47iunxsn 5114 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
7243, 41eqtr4i 2771 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7371, 72eqtri 2768 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7470, 73uneq12i 4189 . . . 4 ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7560, 61, 743eqtri 2772 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
76 iunxun 5117 . . 3 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7758, 75, 763sstr4i 4052 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘)
781, 2, 3, 4, 5, 18, 39, 50, 77comptiunov2i 43668 1 (r* ∘ t+) = t*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cun 3974  cin 3975  wss 3976  c0 4352  {csn 4648  {cpr 4650   ciun 5015  ccom 5704  (class class class)co 7448  0cc0 11184  1c1 11185  cn 12293  0cn0 12553  t+ctcl 15034  t*crtcl 15035  𝑟crelexp 15068  r*crcl 43634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-trcl 15036  df-rtrcl 15037  df-relexp 15069  df-rcl 43635
This theorem is referenced by:  cortrcltrcl  43702  corclrtrcl  43703
  Copyright terms: Public domain W3C validator