Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  corcltrcl Structured version   Visualization version   GIF version

Theorem corcltrcl 41347
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.)
Assertion
Ref Expression
corcltrcl (r* ∘ t+) = t*

Proof of Theorem corcltrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrcl4 41284 . 2 r* = (𝑎 ∈ V ↦ 𝑖 ∈ {0, 1} (𝑎𝑟𝑖))
2 dftrcl3 41328 . 2 t+ = (𝑏 ∈ V ↦ 𝑗 ∈ ℕ (𝑏𝑟𝑗))
3 dfrtrcl3 41341 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 prex 5355 . 2 {0, 1} ∈ V
5 nnex 11979 . 2 ℕ ∈ V
6 df-n0 12234 . . 3 0 = (ℕ ∪ {0})
7 uncom 4087 . . 3 (ℕ ∪ {0}) = ({0} ∪ ℕ)
8 df-pr 4564 . . . . 5 {0, 1} = ({0} ∪ {1})
98uneq1i 4093 . . . 4 ({0, 1} ∪ ℕ) = (({0} ∪ {1}) ∪ ℕ)
10 unass 4100 . . . 4 (({0} ∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ))
11 1nn 11984 . . . . . . 7 1 ∈ ℕ
12 snssi 4741 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn1 4114 . . . . . 6 ({1} ⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ)
1513, 14mpbi 229 . . . . 5 ({1} ∪ ℕ) = ℕ
1615uneq2i 4094 . . . 4 ({0} ∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ)
179, 10, 163eqtrri 2771 . . 3 ({0} ∪ ℕ) = ({0, 1} ∪ ℕ)
186, 7, 173eqtri 2770 . 2 0 = ({0, 1} ∪ ℕ)
19 oveq2 7283 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 4970 . . 3 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) = 𝑖 ∈ {0, 1} (𝑑𝑟𝑖)
21 ss2iun 4942 . . . 4 (∀𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
22 relexp1g 14737 . . . . . . . 8 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2322elv 3438 . . . . . . 7 (𝑑𝑟1) = 𝑑
24 oveq2 7283 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
2524ssiun2s 4978 . . . . . . . 8 (1 ∈ ℕ → (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗))
2611, 25ax-mp 5 . . . . . . 7 (𝑑𝑟1) ⊆ 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2723, 26eqsstrri 3956 . . . . . 6 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗)
2827a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑑 𝑗 ∈ ℕ (𝑑𝑟𝑗))
29 ovex 7308 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
305, 29iunex 7811 . . . . . 6 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V
3130a1i 11 . . . . 5 (𝑖 ∈ {0, 1} → 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V)
32 0nn0 12248 . . . . . . 7 0 ∈ ℕ0
33 1nn0 12249 . . . . . . 7 1 ∈ ℕ0
34 prssi 4754 . . . . . . 7 ((0 ∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1} ⊆ ℕ0)
3532, 33, 34mp2an 689 . . . . . 6 {0, 1} ⊆ ℕ0
3635sseli 3917 . . . . 5 (𝑖 ∈ {0, 1} → 𝑖 ∈ ℕ0)
3728, 31, 36relexpss1d 41313 . . . 4 (𝑖 ∈ {0, 1} → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
3821, 37mprg 3078 . . 3 𝑖 ∈ {0, 1} (𝑑𝑟𝑖) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
3920, 38eqsstri 3955 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
40 oveq2 7283 . . . . 5 (𝑘 = 𝑗 → (𝑑𝑟𝑘) = (𝑑𝑟𝑗))
4140cbviunv 4970 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
42 relexp1g 14737 . . . . 5 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗))
4330, 42ax-mp 5 . . . 4 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ ℕ (𝑑𝑟𝑗)
4441, 43eqtr4i 2769 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
45 1ex 10971 . . . . 5 1 ∈ V
4645prid2 4699 . . . 4 1 ∈ {0, 1}
47 oveq2 7283 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1))
4847ssiun2s 4978 . . . 4 (1 ∈ {0, 1} → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
4946, 48ax-mp 5 . . 3 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
5044, 49eqsstri 3955 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
51 c0ex 10969 . . . . . 6 0 ∈ V
5251prid1 4698 . . . . 5 0 ∈ {0, 1}
53 oveq2 7283 . . . . . 6 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
5453ssiun2s 4978 . . . . 5 (0 ∈ {0, 1} → (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
5552, 54ax-mp 5 . . . 4 (𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
56 ssid 3943 . . . 4 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)
57 unss12 4116 . . . 4 (((𝑑𝑟0) ⊆ 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∧ 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) → ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)))
5855, 56, 57mp2an 689 . . 3 ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘)) ⊆ ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
59 iuneq1 4940 . . . . 5 ({0, 1} = ({0} ∪ {1}) → 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
608, 59ax-mp 5 . . . 4 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)
61 iunxun 5023 . . . 4 𝑖 ∈ ({0} ∪ {1})( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖))
62 oveq2 7283 . . . . . . 7 (𝑖 = 0 → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0))
6351, 62iunxsn 5020 . . . . . 6 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0)
64 vex 3436 . . . . . . 7 𝑑 ∈ V
65 nnssnn0 12236 . . . . . . 7 ℕ ⊆ ℕ0
66 inelcm 4398 . . . . . . . 8 ((1 ∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠ ∅)
6746, 11, 66mp2an 689 . . . . . . 7 ({0, 1} ∩ ℕ) ≠ ∅
68 iunrelexp0 41310 . . . . . . 7 ((𝑑 ∈ V ∧ ℕ ⊆ ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0))
6964, 65, 67, 68mp3an 1460 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟0) = (𝑑𝑟0)
7063, 69eqtri 2766 . . . . 5 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = (𝑑𝑟0)
7145, 47iunxsn 5020 . . . . . 6 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1)
7243, 41eqtr4i 2769 . . . . . 6 ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7371, 72eqtri 2766 . . . . 5 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ ℕ (𝑑𝑟𝑘)
7470, 73uneq12i 4095 . . . 4 ( 𝑖 ∈ {0} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ∪ 𝑖 ∈ {1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖)) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7560, 61, 743eqtri 2770 . . 3 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) = ((𝑑𝑟0) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
76 iunxun 5023 . . 3 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘) = ( 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ∪ 𝑘 ∈ ℕ (𝑑𝑟𝑘))
7758, 75, 763sstr4i 3964 . 2 𝑖 ∈ {0, 1} ( 𝑗 ∈ ℕ (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑𝑟𝑘)
781, 2, 3, 4, 5, 18, 39, 50, 77comptiunov2i 41314 1 (r* ∘ t+) = t*
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  cun 3885  cin 3886  wss 3887  c0 4256  {csn 4561  {cpr 4563   ciun 4924  ccom 5593  (class class class)co 7275  0cc0 10871  1c1 10872  cn 11973  0cn0 12233  t+ctcl 14696  t*crtcl 14697  𝑟crelexp 14730  r*crcl 41280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-seq 13722  df-trcl 14698  df-rtrcl 14699  df-relexp 14731  df-rcl 41281
This theorem is referenced by:  cortrcltrcl  41348  corclrtrcl  41349
  Copyright terms: Public domain W3C validator