Step | Hyp | Ref
| Expression |
1 | | dfrcl4 41173 |
. 2
⊢ r* =
(𝑎 ∈ V ↦
∪ 𝑖 ∈ {0, 1} (𝑎↑𝑟𝑖)) |
2 | | dftrcl3 41217 |
. 2
⊢ t+ =
(𝑏 ∈ V ↦
∪ 𝑗 ∈ ℕ (𝑏↑𝑟𝑗)) |
3 | | dfrtrcl3 41230 |
. 2
⊢ t* =
(𝑐 ∈ V ↦
∪ 𝑘 ∈ ℕ0 (𝑐↑𝑟𝑘)) |
4 | | prex 5350 |
. 2
⊢ {0, 1}
∈ V |
5 | | nnex 11909 |
. 2
⊢ ℕ
∈ V |
6 | | df-n0 12164 |
. . 3
⊢
ℕ0 = (ℕ ∪ {0}) |
7 | | uncom 4083 |
. . 3
⊢ (ℕ
∪ {0}) = ({0} ∪ ℕ) |
8 | | df-pr 4561 |
. . . . 5
⊢ {0, 1} =
({0} ∪ {1}) |
9 | 8 | uneq1i 4089 |
. . . 4
⊢ ({0, 1}
∪ ℕ) = (({0} ∪ {1}) ∪ ℕ) |
10 | | unass 4096 |
. . . 4
⊢ (({0}
∪ {1}) ∪ ℕ) = ({0} ∪ ({1} ∪ ℕ)) |
11 | | 1nn 11914 |
. . . . . . 7
⊢ 1 ∈
ℕ |
12 | | snssi 4738 |
. . . . . . 7
⊢ (1 ∈
ℕ → {1} ⊆ ℕ) |
13 | 11, 12 | ax-mp 5 |
. . . . . 6
⊢ {1}
⊆ ℕ |
14 | | ssequn1 4110 |
. . . . . 6
⊢ ({1}
⊆ ℕ ↔ ({1} ∪ ℕ) = ℕ) |
15 | 13, 14 | mpbi 229 |
. . . . 5
⊢ ({1}
∪ ℕ) = ℕ |
16 | 15 | uneq2i 4090 |
. . . 4
⊢ ({0}
∪ ({1} ∪ ℕ)) = ({0} ∪ ℕ) |
17 | 9, 10, 16 | 3eqtrri 2771 |
. . 3
⊢ ({0}
∪ ℕ) = ({0, 1} ∪ ℕ) |
18 | 6, 7, 17 | 3eqtri 2770 |
. 2
⊢
ℕ0 = ({0, 1} ∪ ℕ) |
19 | | oveq2 7263 |
. . . 4
⊢ (𝑘 = 𝑖 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟𝑖)) |
20 | 19 | cbviunv 4966 |
. . 3
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) = ∪ 𝑖 ∈ {0, 1} (𝑑↑𝑟𝑖) |
21 | | ss2iun 4939 |
. . . 4
⊢
(∀𝑖 ∈
{0, 1} (𝑑↑𝑟𝑖) ⊆ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) → ∪
𝑖 ∈ {0, 1} (𝑑↑𝑟𝑖) ⊆ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
22 | | relexp1g 14665 |
. . . . . . . 8
⊢ (𝑑 ∈ V → (𝑑↑𝑟1) =
𝑑) |
23 | 22 | elv 3428 |
. . . . . . 7
⊢ (𝑑↑𝑟1) =
𝑑 |
24 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑗 = 1 → (𝑑↑𝑟𝑗) = (𝑑↑𝑟1)) |
25 | 24 | ssiun2s 4974 |
. . . . . . . 8
⊢ (1 ∈
ℕ → (𝑑↑𝑟1) ⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
26 | 11, 25 | ax-mp 5 |
. . . . . . 7
⊢ (𝑑↑𝑟1)
⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
27 | 23, 26 | eqsstrri 3952 |
. . . . . 6
⊢ 𝑑 ⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
28 | 27 | a1i 11 |
. . . . 5
⊢ (𝑖 ∈ {0, 1} → 𝑑 ⊆ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
29 | | ovex 7288 |
. . . . . . 7
⊢ (𝑑↑𝑟𝑗) ∈ V |
30 | 5, 29 | iunex 7784 |
. . . . . 6
⊢ ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V |
31 | 30 | a1i 11 |
. . . . 5
⊢ (𝑖 ∈ {0, 1} → ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V) |
32 | | 0nn0 12178 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
33 | | 1nn0 12179 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
34 | | prssi 4751 |
. . . . . . 7
⊢ ((0
∈ ℕ0 ∧ 1 ∈ ℕ0) → {0, 1}
⊆ ℕ0) |
35 | 32, 33, 34 | mp2an 688 |
. . . . . 6
⊢ {0, 1}
⊆ ℕ0 |
36 | 35 | sseli 3913 |
. . . . 5
⊢ (𝑖 ∈ {0, 1} → 𝑖 ∈
ℕ0) |
37 | 28, 31, 36 | relexpss1d 41202 |
. . . 4
⊢ (𝑖 ∈ {0, 1} → (𝑑↑𝑟𝑖) ⊆ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
38 | 21, 37 | mprg 3077 |
. . 3
⊢ ∪ 𝑖 ∈ {0, 1} (𝑑↑𝑟𝑖) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
39 | 20, 38 | eqsstri 3951 |
. 2
⊢ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
40 | | oveq2 7263 |
. . . . 5
⊢ (𝑘 = 𝑗 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟𝑗)) |
41 | 40 | cbviunv 4966 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
42 | | relexp1g 14665 |
. . . . 5
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) ∈ V → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)) |
43 | 30, 42 | ax-mp 5 |
. . . 4
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗) |
44 | 41, 43 | eqtr4i 2769 |
. . 3
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) |
45 | | 1ex 10902 |
. . . . 5
⊢ 1 ∈
V |
46 | 45 | prid2 4696 |
. . . 4
⊢ 1 ∈
{0, 1} |
47 | | oveq2 7263 |
. . . . 5
⊢ (𝑖 = 1 → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1)) |
48 | 47 | ssiun2s 4974 |
. . . 4
⊢ (1 ∈
{0, 1} → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) ⊆
∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
49 | 46, 48 | ax-mp 5 |
. . 3
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) ⊆
∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
50 | 44, 49 | eqsstri 3951 |
. 2
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪
𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
51 | | c0ex 10900 |
. . . . . 6
⊢ 0 ∈
V |
52 | 51 | prid1 4695 |
. . . . 5
⊢ 0 ∈
{0, 1} |
53 | | oveq2 7263 |
. . . . . 6
⊢ (𝑘 = 0 → (𝑑↑𝑟𝑘) = (𝑑↑𝑟0)) |
54 | 53 | ssiun2s 4974 |
. . . . 5
⊢ (0 ∈
{0, 1} → (𝑑↑𝑟0) ⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘)) |
55 | 52, 54 | ax-mp 5 |
. . . 4
⊢ (𝑑↑𝑟0)
⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) |
56 | | ssid 3939 |
. . . 4
⊢ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
57 | | unss12 4112 |
. . . 4
⊢ (((𝑑↑𝑟0)
⊆ ∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∧ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘) ⊆ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) → ((𝑑↑𝑟0) ∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) ⊆ (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘))) |
58 | 55, 56, 57 | mp2an 688 |
. . 3
⊢ ((𝑑↑𝑟0)
∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) ⊆ (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
59 | | iuneq1 4937 |
. . . . 5
⊢ ({0, 1} =
({0} ∪ {1}) → ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
60 | 8, 59 | ax-mp 5 |
. . . 4
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) |
61 | | iunxun 5019 |
. . . 4
⊢ ∪ 𝑖 ∈ ({0} ∪ {1})(∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ∪ ∪
𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) |
62 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑖 = 0 → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0)) |
63 | 51, 62 | iunxsn 5016 |
. . . . . 6
⊢ ∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0) |
64 | | vex 3426 |
. . . . . . 7
⊢ 𝑑 ∈ V |
65 | | nnssnn0 12166 |
. . . . . . 7
⊢ ℕ
⊆ ℕ0 |
66 | | inelcm 4395 |
. . . . . . . 8
⊢ ((1
∈ {0, 1} ∧ 1 ∈ ℕ) → ({0, 1} ∩ ℕ) ≠
∅) |
67 | 46, 11, 66 | mp2an 688 |
. . . . . . 7
⊢ ({0, 1}
∩ ℕ) ≠ ∅ |
68 | | iunrelexp0 41199 |
. . . . . . 7
⊢ ((𝑑 ∈ V ∧ ℕ ⊆
ℕ0 ∧ ({0, 1} ∩ ℕ) ≠ ∅) → (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0) = (𝑑↑𝑟0)) |
69 | 64, 65, 67, 68 | mp3an 1459 |
. . . . . 6
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟0) = (𝑑↑𝑟0) |
70 | 63, 69 | eqtri 2766 |
. . . . 5
⊢ ∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (𝑑↑𝑟0) |
71 | 45, 47 | iunxsn 5016 |
. . . . . 6
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = (∪
𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) |
72 | 43, 41 | eqtr4i 2769 |
. . . . . 6
⊢ (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟1) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
73 | 71, 72 | eqtri 2766 |
. . . . 5
⊢ ∪ 𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘) |
74 | 70, 73 | uneq12i 4091 |
. . . 4
⊢ (∪ 𝑖 ∈ {0} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ∪ ∪
𝑖 ∈ {1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖)) = ((𝑑↑𝑟0) ∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
75 | 60, 61, 74 | 3eqtri 2770 |
. . 3
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) = ((𝑑↑𝑟0) ∪ ∪ 𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
76 | | iunxun 5019 |
. . 3
⊢ ∪ 𝑘 ∈ ({0, 1} ∪ ℕ)(𝑑↑𝑟𝑘) = (∪ 𝑘 ∈ {0, 1} (𝑑↑𝑟𝑘) ∪ ∪
𝑘 ∈ ℕ (𝑑↑𝑟𝑘)) |
77 | 58, 75, 76 | 3sstr4i 3960 |
. 2
⊢ ∪ 𝑖 ∈ {0, 1} (∪ 𝑗 ∈ ℕ (𝑑↑𝑟𝑗)↑𝑟𝑖) ⊆ ∪
𝑘 ∈ ({0, 1} ∪
ℕ)(𝑑↑𝑟𝑘) |
78 | 1, 2, 3, 4, 5, 18,
39, 50, 77 | comptiunov2i 41203 |
1
⊢ (r*
∘ t+) = t* |