![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4201 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 12554 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtrri 4046 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3974 ⊆ wss 3976 {csn 4648 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-n0 12554 |
This theorem is referenced by: nnnn0 12560 nnnn0d 12613 nthruz 16301 oddge22np1 16397 bitsfzolem 16480 lcmfval 16668 ramub1 17075 ramcl 17076 ply1divex 26196 pserdvlem2 26490 2sqreunnlem1 27511 2sqreunnlem2 27517 fsum2dsub 34584 breprexplemc 34609 breprexpnat 34611 knoppndvlem18 36495 sumcubes 42301 hbtlem5 43085 brfvtrcld 43683 corcltrcl 43701 fourierdlem50 46077 fourierdlem102 46129 fourierdlem114 46141 fmtnoinf 47410 fmtnofac2 47443 |
Copyright terms: Public domain | W3C validator |