| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version | ||
| Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4141 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
| 2 | df-n0 12443 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 1, 2 | sseqtrri 3996 | 1 ⊢ ℕ ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3912 ⊆ wss 3914 {csn 4589 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-n0 12443 |
| This theorem is referenced by: nnnn0 12449 nnnn0d 12503 nthruz 16221 oddge22np1 16319 bitsfzolem 16404 lcmfval 16591 ramub1 16999 ramcl 17000 ply1divex 26042 pserdvlem2 26338 2sqreunnlem1 27360 2sqreunnlem2 27366 fsum2dsub 34598 breprexplemc 34623 breprexpnat 34625 knoppndvlem18 36517 sumcubes 42301 hbtlem5 43117 brfvtrcld 43710 corcltrcl 43728 fourierdlem50 46154 fourierdlem102 46206 fourierdlem114 46218 fmtnoinf 47537 fmtnofac2 47570 |
| Copyright terms: Public domain | W3C validator |