MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssnn0 Structured version   Visualization version   GIF version

Theorem nnssnn0 12379
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0 ℕ ⊆ ℕ0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 4123 . 2 ℕ ⊆ (ℕ ∪ {0})
2 df-n0 12377 . 2 0 = (ℕ ∪ {0})
31, 2sseqtrri 3979 1 ℕ ⊆ ℕ0
Colors of variables: wff setvar class
Syntax hints:  cun 3895  wss 3897  {csn 4571  0cc0 11001  cn 12120  0cn0 12376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-n0 12377
This theorem is referenced by:  nnnn0  12383  nnnn0d  12437  nthruz  16157  oddge22np1  16255  bitsfzolem  16340  lcmfval  16527  ramub1  16935  ramcl  16936  ply1divex  26064  pserdvlem2  26360  2sqreunnlem1  27382  2sqreunnlem2  27388  fsum2dsub  34612  breprexplemc  34637  breprexpnat  34639  knoppndvlem18  36563  sumcubes  42346  hbtlem5  43161  brfvtrcld  43754  corcltrcl  43772  fourierdlem50  46194  fourierdlem102  46246  fourierdlem114  46258  fmtnoinf  47567  fmtnofac2  47600
  Copyright terms: Public domain W3C validator