![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4075 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 11752 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtr4i 3931 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3863 ⊆ wss 3865 {csn 4478 0cc0 10390 ℕcn 11492 ℕ0cn0 11751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-v 3442 df-un 3870 df-in 3872 df-ss 3880 df-n0 11752 |
This theorem is referenced by: nnnn0 11758 nnnn0d 11809 nthruz 15443 oddge22np1 15535 bitsfzolem 15620 lcmfval 15798 ramub1 16197 ramcl 16198 ply1divex 24417 pserdvlem2 24703 2sqreunnlem1 25711 2sqreunnlem2 25717 fsum2dsub 31491 breprexplemc 31516 breprexpnat 31518 knoppndvlem18 33479 hbtlem5 39234 brfvtrcld 39572 corcltrcl 39590 fourierdlem50 42005 fourierdlem102 42057 fourierdlem114 42069 fmtnoinf 43202 fmtnofac2 43235 |
Copyright terms: Public domain | W3C validator |