| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version | ||
| Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4144 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
| 2 | df-n0 12450 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 1, 2 | sseqtrri 3999 | 1 ⊢ ℕ ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3915 ⊆ wss 3917 {csn 4592 0cc0 11075 ℕcn 12193 ℕ0cn0 12449 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 df-n0 12450 |
| This theorem is referenced by: nnnn0 12456 nnnn0d 12510 nthruz 16228 oddge22np1 16326 bitsfzolem 16411 lcmfval 16598 ramub1 17006 ramcl 17007 ply1divex 26049 pserdvlem2 26345 2sqreunnlem1 27367 2sqreunnlem2 27373 fsum2dsub 34605 breprexplemc 34630 breprexpnat 34632 knoppndvlem18 36524 sumcubes 42308 hbtlem5 43124 brfvtrcld 43717 corcltrcl 43735 fourierdlem50 46161 fourierdlem102 46213 fourierdlem114 46225 fmtnoinf 47541 fmtnofac2 47574 |
| Copyright terms: Public domain | W3C validator |