| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version | ||
| Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4153 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
| 2 | df-n0 12502 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 1, 2 | sseqtrri 4008 | 1 ⊢ ℕ ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3924 ⊆ wss 3926 {csn 4601 0cc0 11129 ℕcn 12240 ℕ0cn0 12501 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 df-n0 12502 |
| This theorem is referenced by: nnnn0 12508 nnnn0d 12562 nthruz 16271 oddge22np1 16368 bitsfzolem 16453 lcmfval 16640 ramub1 17048 ramcl 17049 ply1divex 26094 pserdvlem2 26390 2sqreunnlem1 27412 2sqreunnlem2 27418 fsum2dsub 34639 breprexplemc 34664 breprexpnat 34666 knoppndvlem18 36547 sumcubes 42362 hbtlem5 43152 brfvtrcld 43745 corcltrcl 43763 fourierdlem50 46185 fourierdlem102 46237 fourierdlem114 46249 fmtnoinf 47550 fmtnofac2 47583 |
| Copyright terms: Public domain | W3C validator |