| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version | ||
| Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4123 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
| 2 | df-n0 12377 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 1, 2 | sseqtrri 3979 | 1 ⊢ ℕ ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 ⊆ wss 3897 {csn 4571 0cc0 11001 ℕcn 12120 ℕ0cn0 12376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 df-n0 12377 |
| This theorem is referenced by: nnnn0 12383 nnnn0d 12437 nthruz 16157 oddge22np1 16255 bitsfzolem 16340 lcmfval 16527 ramub1 16935 ramcl 16936 ply1divex 26064 pserdvlem2 26360 2sqreunnlem1 27382 2sqreunnlem2 27388 fsum2dsub 34612 breprexplemc 34637 breprexpnat 34639 knoppndvlem18 36563 sumcubes 42346 hbtlem5 43161 brfvtrcld 43754 corcltrcl 43772 fourierdlem50 46194 fourierdlem102 46246 fourierdlem114 46258 fmtnoinf 47567 fmtnofac2 47600 |
| Copyright terms: Public domain | W3C validator |