MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnssnn0 Structured version   Visualization version   GIF version

Theorem nnssnn0 12445
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
Assertion
Ref Expression
nnssnn0 ℕ ⊆ ℕ0

Proof of Theorem nnssnn0
StepHypRef Expression
1 ssun1 4141 . 2 ℕ ⊆ (ℕ ∪ {0})
2 df-n0 12443 . 2 0 = (ℕ ∪ {0})
31, 2sseqtrri 3996 1 ℕ ⊆ ℕ0
Colors of variables: wff setvar class
Syntax hints:  cun 3912  wss 3914  {csn 4589  0cc0 11068  cn 12186  0cn0 12442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-un 3919  df-ss 3931  df-n0 12443
This theorem is referenced by:  nnnn0  12449  nnnn0d  12503  nthruz  16221  oddge22np1  16319  bitsfzolem  16404  lcmfval  16591  ramub1  16999  ramcl  17000  ply1divex  26042  pserdvlem2  26338  2sqreunnlem1  27360  2sqreunnlem2  27366  fsum2dsub  34598  breprexplemc  34623  breprexpnat  34625  knoppndvlem18  36517  sumcubes  42301  hbtlem5  43117  brfvtrcld  43710  corcltrcl  43728  fourierdlem50  46154  fourierdlem102  46206  fourierdlem114  46218  fmtnoinf  47537  fmtnofac2  47570
  Copyright terms: Public domain W3C validator