Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4106 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 12234 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtrri 3958 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3885 ⊆ wss 3887 {csn 4561 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 df-n0 12234 |
This theorem is referenced by: nnnn0 12240 nnnn0d 12293 nthruz 15962 oddge22np1 16058 bitsfzolem 16141 lcmfval 16326 ramub1 16729 ramcl 16730 ply1divex 25301 pserdvlem2 25587 2sqreunnlem1 26597 2sqreunnlem2 26603 fsum2dsub 32587 breprexplemc 32612 breprexpnat 32614 knoppndvlem18 34709 hbtlem5 40953 brfvtrcld 41329 corcltrcl 41347 fourierdlem50 43697 fourierdlem102 43749 fourierdlem114 43761 fmtnoinf 44988 fmtnofac2 45021 |
Copyright terms: Public domain | W3C validator |