| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version | ||
| Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4131 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
| 2 | df-n0 12403 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 1, 2 | sseqtrri 3987 | 1 ⊢ ℕ ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3903 ⊆ wss 3905 {csn 4579 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-ss 3922 df-n0 12403 |
| This theorem is referenced by: nnnn0 12409 nnnn0d 12463 nthruz 16180 oddge22np1 16278 bitsfzolem 16363 lcmfval 16550 ramub1 16958 ramcl 16959 ply1divex 26058 pserdvlem2 26354 2sqreunnlem1 27376 2sqreunnlem2 27382 fsum2dsub 34577 breprexplemc 34602 breprexpnat 34604 knoppndvlem18 36505 sumcubes 42289 hbtlem5 43104 brfvtrcld 43697 corcltrcl 43715 fourierdlem50 46141 fourierdlem102 46193 fourierdlem114 46205 fmtnoinf 47524 fmtnofac2 47557 |
| Copyright terms: Public domain | W3C validator |