![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4188 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 12525 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtrri 4033 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3961 ⊆ wss 3963 {csn 4631 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-ss 3980 df-n0 12525 |
This theorem is referenced by: nnnn0 12531 nnnn0d 12585 nthruz 16286 oddge22np1 16383 bitsfzolem 16468 lcmfval 16655 ramub1 17062 ramcl 17063 ply1divex 26191 pserdvlem2 26487 2sqreunnlem1 27508 2sqreunnlem2 27514 fsum2dsub 34601 breprexplemc 34626 breprexpnat 34628 knoppndvlem18 36512 sumcubes 42326 hbtlem5 43117 brfvtrcld 43711 corcltrcl 43729 fourierdlem50 46112 fourierdlem102 46164 fourierdlem114 46176 fmtnoinf 47461 fmtnofac2 47494 |
Copyright terms: Public domain | W3C validator |