Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version |
Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssun1 4102 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
2 | df-n0 12164 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 1, 2 | sseqtrri 3954 | 1 ⊢ ℕ ⊆ ℕ0 |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3881 ⊆ wss 3883 {csn 4558 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-n0 12164 |
This theorem is referenced by: nnnn0 12170 nnnn0d 12223 nthruz 15890 oddge22np1 15986 bitsfzolem 16069 lcmfval 16254 ramub1 16657 ramcl 16658 ply1divex 25206 pserdvlem2 25492 2sqreunnlem1 26502 2sqreunnlem2 26508 fsum2dsub 32487 breprexplemc 32512 breprexpnat 32514 knoppndvlem18 34636 hbtlem5 40869 brfvtrcld 41218 corcltrcl 41236 fourierdlem50 43587 fourierdlem102 43639 fourierdlem114 43651 fmtnoinf 44876 fmtnofac2 44909 |
Copyright terms: Public domain | W3C validator |