| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnssnn0 | Structured version Visualization version GIF version | ||
| Description: Positive naturals are a subset of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nnssnn0 | ⊢ ℕ ⊆ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssun1 4127 | . 2 ⊢ ℕ ⊆ (ℕ ∪ {0}) | |
| 2 | df-n0 12393 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 1, 2 | sseqtrri 3980 | 1 ⊢ ℕ ⊆ ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3896 ⊆ wss 3898 {csn 4577 0cc0 11017 ℕcn 12136 ℕ0cn0 12392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 df-n0 12393 |
| This theorem is referenced by: nnnn0 12399 nnnn0d 12453 nthruz 16169 oddge22np1 16267 bitsfzolem 16352 lcmfval 16539 ramub1 16947 ramcl 16948 ply1divex 26089 pserdvlem2 26385 2sqreunnlem1 27407 2sqreunnlem2 27413 fsum2dsub 34692 breprexplemc 34717 breprexpnat 34719 knoppndvlem18 36645 sumcubes 42483 hbtlem5 43285 brfvtrcld 43878 corcltrcl 43896 fourierdlem50 46316 fourierdlem102 46368 fourierdlem114 46380 fmtnoinf 47698 fmtnofac2 47731 |
| Copyright terms: Public domain | W3C validator |