Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrclrcl Structured version   Visualization version   GIF version

Theorem cotrclrcl 40968
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.)
Assertion
Ref Expression
cotrclrcl (t+ ∘ r*) = t*

Proof of Theorem cotrclrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrcl3 40946 . 2 t+ = (𝑎 ∈ V ↦ 𝑖 ∈ ℕ (𝑎𝑟𝑖))
2 dfrcl4 40902 . 2 r* = (𝑏 ∈ V ↦ 𝑗 ∈ {0, 1} (𝑏𝑟𝑗))
3 dfrtrcl3 40959 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 nnex 11801 . 2 ℕ ∈ V
5 prex 5310 . 2 {0, 1} ∈ V
6 df-n0 12056 . . 3 0 = (ℕ ∪ {0})
7 df-pr 4530 . . . . . 6 {0, 1} = ({0} ∪ {1})
87equncomi 4055 . . . . 5 {0, 1} = ({1} ∪ {0})
98uneq2i 4060 . . . 4 (ℕ ∪ {0, 1}) = (ℕ ∪ ({1} ∪ {0}))
10 unass 4066 . . . 4 ((ℕ ∪ {1}) ∪ {0}) = (ℕ ∪ ({1} ∪ {0}))
11 1nn 11806 . . . . . . 7 1 ∈ ℕ
12 snssi 4707 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn2 4083 . . . . . 6 ({1} ⊆ ℕ ↔ (ℕ ∪ {1}) = ℕ)
1513, 14mpbi 233 . . . . 5 (ℕ ∪ {1}) = ℕ
1615uneq1i 4059 . . . 4 ((ℕ ∪ {1}) ∪ {0}) = (ℕ ∪ {0})
179, 10, 163eqtr2ri 2766 . . 3 (ℕ ∪ {0}) = (ℕ ∪ {0, 1})
186, 17eqtri 2759 . 2 0 = (ℕ ∪ {0, 1})
19 oveq2 7199 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 4935 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑖 ∈ ℕ (𝑑𝑟𝑖)
21 ss2iun 4908 . . . 4 (∀𝑖 ∈ ℕ (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ ℕ (𝑑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
22 1ex 10794 . . . . . . . 8 1 ∈ V
2322prid2 4665 . . . . . . 7 1 ∈ {0, 1}
24 oveq2 7199 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
25 relexp1g 14554 . . . . . . . . . 10 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2625elv 3404 . . . . . . . . 9 (𝑑𝑟1) = 𝑑
2724, 26eqtrdi 2787 . . . . . . . 8 (𝑗 = 1 → (𝑑𝑟𝑗) = 𝑑)
2827ssiun2s 4943 . . . . . . 7 (1 ∈ {0, 1} → 𝑑 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
2923, 28ax-mp 5 . . . . . 6 𝑑 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
3029a1i 11 . . . . 5 (𝑖 ∈ ℕ → 𝑑 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
31 ovex 7224 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
325, 31iunex 7719 . . . . . 6 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V
3332a1i 11 . . . . 5 (𝑖 ∈ ℕ → 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V)
34 nnnn0 12062 . . . . 5 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
3530, 33, 34relexpss1d 40931 . . . 4 (𝑖 ∈ ℕ → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
3621, 35mprg 3065 . . 3 𝑖 ∈ ℕ (𝑑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
3720, 36eqsstri 3921 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
38 oveq2 7199 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1))
39 relexp1g 14554 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
4032, 39ax-mp 5 . . . . . 6 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
41 oveq2 7199 . . . . . . 7 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
4241cbviunv 4935 . . . . . 6 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
4340, 42eqtri 2759 . . . . 5 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
4438, 43eqtrdi 2787 . . . 4 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
4544ssiun2s 4943 . . 3 (1 ∈ ℕ → 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
4611, 45ax-mp 5 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
47 iunss 4940 . . . 4 ( 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
48 iuneq1 4906 . . . . . . . 8 ({0, 1} = ({0} ∪ {1}) → 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑗 ∈ ({0} ∪ {1})(𝑑𝑟𝑗))
497, 48ax-mp 5 . . . . . . 7 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑗 ∈ ({0} ∪ {1})(𝑑𝑟𝑗)
50 iunxun 4988 . . . . . . 7 𝑗 ∈ ({0} ∪ {1})(𝑑𝑟𝑗) = ( 𝑗 ∈ {0} (𝑑𝑟𝑗) ∪ 𝑗 ∈ {1} (𝑑𝑟𝑗))
51 c0ex 10792 . . . . . . . . 9 0 ∈ V
52 oveq2 7199 . . . . . . . . 9 (𝑗 = 0 → (𝑑𝑟𝑗) = (𝑑𝑟0))
5351, 52iunxsn 4985 . . . . . . . 8 𝑗 ∈ {0} (𝑑𝑟𝑗) = (𝑑𝑟0)
5422, 24iunxsn 4985 . . . . . . . 8 𝑗 ∈ {1} (𝑑𝑟𝑗) = (𝑑𝑟1)
5553, 54uneq12i 4061 . . . . . . 7 ( 𝑗 ∈ {0} (𝑑𝑟𝑗) ∪ 𝑗 ∈ {1} (𝑑𝑟𝑗)) = ((𝑑𝑟0) ∪ (𝑑𝑟1))
5649, 50, 553eqtri 2763 . . . . . 6 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = ((𝑑𝑟0) ∪ (𝑑𝑟1))
5756oveq1i 7201 . . . . 5 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖)
58 oveq2 7199 . . . . . . 7 (𝑥 = 1 → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1))
5958sseq1d 3918 . . . . . 6 (𝑥 = 1 → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
60 oveq2 7199 . . . . . . 7 (𝑥 = 𝑦 → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦))
6160sseq1d 3918 . . . . . 6 (𝑥 = 𝑦 → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
62 oveq2 7199 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)))
6362sseq1d 3918 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
64 oveq2 7199 . . . . . . 7 (𝑥 = 𝑖 → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖))
6564sseq1d 3918 . . . . . 6 (𝑥 = 𝑖 → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
66 ovex 7224 . . . . . . . . 9 (𝑑𝑟0) ∈ V
67 ovex 7224 . . . . . . . . 9 (𝑑𝑟1) ∈ V
6866, 67unex 7509 . . . . . . . 8 ((𝑑𝑟0) ∪ (𝑑𝑟1)) ∈ V
69 relexp1g 14554 . . . . . . . 8 (((𝑑𝑟0) ∪ (𝑑𝑟1)) ∈ V → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) = ((𝑑𝑟0) ∪ (𝑑𝑟1)))
7068, 69ax-mp 5 . . . . . . 7 (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) = ((𝑑𝑟0) ∪ (𝑑𝑟1))
71 0nn0 12070 . . . . . . . . 9 0 ∈ ℕ0
72 oveq2 7199 . . . . . . . . . 10 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
7372ssiun2s 4943 . . . . . . . . 9 (0 ∈ ℕ0 → (𝑑𝑟0) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
7471, 73ax-mp 5 . . . . . . . 8 (𝑑𝑟0) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
75 1nn0 12071 . . . . . . . . 9 1 ∈ ℕ0
76 oveq2 7199 . . . . . . . . . 10 (𝑘 = 1 → (𝑑𝑟𝑘) = (𝑑𝑟1))
7776ssiun2s 4943 . . . . . . . . 9 (1 ∈ ℕ0 → (𝑑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
7875, 77ax-mp 5 . . . . . . . 8 (𝑑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
7974, 78unssi 4085 . . . . . . 7 ((𝑑𝑟0) ∪ (𝑑𝑟1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
8070, 79eqsstri 3921 . . . . . 6 (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
81 simpl 486 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → 𝑦 ∈ ℕ)
82 relexpsucnnr 14553 . . . . . . . . 9 ((((𝑑𝑟0) ∪ (𝑑𝑟1)) ∈ V ∧ 𝑦 ∈ ℕ) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) = ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))))
8368, 81, 82sylancr 590 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) = ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))))
84 coss1 5709 . . . . . . . . . 10 ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))))
85 coundi 6091 . . . . . . . . . . 11 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) = (( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) ∪ ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)))
86 relexp0g 14550 . . . . . . . . . . . . . . . 16 (𝑑 ∈ V → (𝑑𝑟0) = ( I ↾ (dom 𝑑 ∪ ran 𝑑)))
8786elv 3404 . . . . . . . . . . . . . . 15 (𝑑𝑟0) = ( I ↾ (dom 𝑑 ∪ ran 𝑑))
8887coeq2i 5714 . . . . . . . . . . . . . 14 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) = ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑)))
89 coiun1 40878 . . . . . . . . . . . . . 14 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑)))
90 coires1 6108 . . . . . . . . . . . . . . . 16 ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑))
9190a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)))
9291iuneq2i 4911 . . . . . . . . . . . . . 14 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑))
9388, 89, 923eqtri 2763 . . . . . . . . . . . . 13 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑))
94 ss2iun 4908 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ (𝑑𝑟𝑘) → 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
95 resss 5861 . . . . . . . . . . . . . . 15 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ (𝑑𝑟𝑘)
9695a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ (𝑑𝑟𝑘))
9794, 96mprg 3065 . . . . . . . . . . . . 13 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
9893, 97eqsstri 3921 . . . . . . . . . . . 12 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
99 coiun1 40878 . . . . . . . . . . . . . 14 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1))
100 iunss2 4944 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ ℕ0𝑖 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) → 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑖 ∈ ℕ0 (𝑑𝑟𝑖))
101 peano2nn0 12095 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
102 sbcel1v 3753 . . . . . . . . . . . . . . . . . . 19 ([(𝑘 + 1) / 𝑖]𝑖 ∈ ℕ0 ↔ (𝑘 + 1) ∈ ℕ0)
103101, 102sylibr 237 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0[(𝑘 + 1) / 𝑖]𝑖 ∈ ℕ0)
104 vex 3402 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
105 relexpaddss 40944 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ 1 ∈ ℕ0𝑑 ∈ V) → ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟(𝑘 + 1)))
10675, 104, 105mp3an23 1455 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟(𝑘 + 1)))
107 ovex 7224 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 + 1) ∈ V
108 csbconstg 3817 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) = ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)))
109107, 108ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) = ((𝑑𝑟𝑘) ∘ (𝑑𝑟1))
110 csbov2g 7237 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖(𝑑𝑟𝑖) = (𝑑𝑟(𝑘 + 1) / 𝑖𝑖))
111 csbvarg 4332 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖𝑖 = (𝑘 + 1))
112111oveq2d 7207 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 + 1) ∈ V → (𝑑𝑟(𝑘 + 1) / 𝑖𝑖) = (𝑑𝑟(𝑘 + 1)))
113110, 112eqtrd 2771 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖(𝑑𝑟𝑖) = (𝑑𝑟(𝑘 + 1)))
114107, 113ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑘 + 1) / 𝑖(𝑑𝑟𝑖) = (𝑑𝑟(𝑘 + 1))
115106, 109, 1143sstr4g 3932 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0(𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑘 + 1) / 𝑖(𝑑𝑟𝑖))
116 sbcssg 4421 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 + 1) ∈ V → ([(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) ↔ (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑘 + 1) / 𝑖(𝑑𝑟𝑖)))
117107, 116ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) ↔ (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑘 + 1) / 𝑖(𝑑𝑟𝑖))
118115, 117sylibr 237 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0[(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖))
119 sbcan 3735 . . . . . . . . . . . . . . . . . 18 ([(𝑘 + 1) / 𝑖](𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)) ↔ ([(𝑘 + 1) / 𝑖]𝑖 ∈ ℕ0[(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
120103, 118, 119sylanbrc 586 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0[(𝑘 + 1) / 𝑖](𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
121120spesbcd 3782 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → ∃𝑖(𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
122 df-rex 3057 . . . . . . . . . . . . . . . 16 (∃𝑖 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) ↔ ∃𝑖(𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
123121, 122sylibr 237 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ∃𝑖 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖))
124100, 123mprg 3065 . . . . . . . . . . . . . 14 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑖 ∈ ℕ0 (𝑑𝑟𝑖)
12599, 124eqsstri 3921 . . . . . . . . . . . . 13 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑖 ∈ ℕ0 (𝑑𝑟𝑖)
126 oveq2 7199 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑑𝑟𝑖) = (𝑑𝑟𝑘))
127126cbviunv 4935 . . . . . . . . . . . . 13 𝑖 ∈ ℕ0 (𝑑𝑟𝑖) = 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
128125, 127sseqtri 3923 . . . . . . . . . . . 12 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
12998, 128unssi 4085 . . . . . . . . . . 11 (( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) ∪ ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
13085, 129eqsstri 3921 . . . . . . . . . 10 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
13184, 130sstrdi 3899 . . . . . . . . 9 ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
132131adantl 485 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
13383, 132eqsstrd 3925 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
134133ex 416 . . . . . 6 (𝑦 ∈ ℕ → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
13559, 61, 63, 65, 80, 134nnind 11813 . . . . 5 (𝑖 ∈ ℕ → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
13657, 135eqsstrid 3935 . . . 4 (𝑖 ∈ ℕ → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
13747, 136mprgbir 3066 . . 3 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
138 iuneq1 4906 . . . 4 (ℕ0 = (ℕ ∪ {0, 1}) → 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ {0, 1})(𝑑𝑟𝑘))
13918, 138ax-mp 5 . . 3 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ {0, 1})(𝑑𝑟𝑘)
140137, 139sseqtri 3923 . 2 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ (ℕ ∪ {0, 1})(𝑑𝑟𝑘)
1411, 2, 3, 4, 5, 18, 37, 46, 140comptiunov2i 40932 1 (t+ ∘ r*) = t*
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wrex 3052  Vcvv 3398  [wsbc 3683  csb 3798  cun 3851  wss 3853  {csn 4527  {cpr 4529   ciun 4890   I cid 5439  dom cdm 5536  ran crn 5537  cres 5538  ccom 5540  (class class class)co 7191  0cc0 10694  1c1 10695   + caddc 10697  cn 11795  0cn0 12055  t+ctcl 14513  t*crtcl 14514  𝑟crelexp 14547  r*crcl 40898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-n0 12056  df-z 12142  df-uz 12404  df-seq 13540  df-trcl 14515  df-rtrcl 14516  df-relexp 14548  df-rcl 40899
This theorem is referenced by:  cortrclrcl  40969  cotrclrtrcl  40970  cortrclrtrcl  40971
  Copyright terms: Public domain W3C validator