Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cotrclrcl Structured version   Visualization version   GIF version

Theorem cotrclrcl 41239
Description: The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.)
Assertion
Ref Expression
cotrclrcl (t+ ∘ r*) = t*

Proof of Theorem cotrclrcl
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrcl3 41217 . 2 t+ = (𝑎 ∈ V ↦ 𝑖 ∈ ℕ (𝑎𝑟𝑖))
2 dfrcl4 41173 . 2 r* = (𝑏 ∈ V ↦ 𝑗 ∈ {0, 1} (𝑏𝑟𝑗))
3 dfrtrcl3 41230 . 2 t* = (𝑐 ∈ V ↦ 𝑘 ∈ ℕ0 (𝑐𝑟𝑘))
4 nnex 11909 . 2 ℕ ∈ V
5 prex 5350 . 2 {0, 1} ∈ V
6 df-n0 12164 . . 3 0 = (ℕ ∪ {0})
7 df-pr 4561 . . . . . 6 {0, 1} = ({0} ∪ {1})
87equncomi 4085 . . . . 5 {0, 1} = ({1} ∪ {0})
98uneq2i 4090 . . . 4 (ℕ ∪ {0, 1}) = (ℕ ∪ ({1} ∪ {0}))
10 unass 4096 . . . 4 ((ℕ ∪ {1}) ∪ {0}) = (ℕ ∪ ({1} ∪ {0}))
11 1nn 11914 . . . . . . 7 1 ∈ ℕ
12 snssi 4738 . . . . . . 7 (1 ∈ ℕ → {1} ⊆ ℕ)
1311, 12ax-mp 5 . . . . . 6 {1} ⊆ ℕ
14 ssequn2 4113 . . . . . 6 ({1} ⊆ ℕ ↔ (ℕ ∪ {1}) = ℕ)
1513, 14mpbi 229 . . . . 5 (ℕ ∪ {1}) = ℕ
1615uneq1i 4089 . . . 4 ((ℕ ∪ {1}) ∪ {0}) = (ℕ ∪ {0})
179, 10, 163eqtr2ri 2773 . . 3 (ℕ ∪ {0}) = (ℕ ∪ {0, 1})
186, 17eqtri 2766 . 2 0 = (ℕ ∪ {0, 1})
19 oveq2 7263 . . . 4 (𝑘 = 𝑖 → (𝑑𝑟𝑘) = (𝑑𝑟𝑖))
2019cbviunv 4966 . . 3 𝑘 ∈ ℕ (𝑑𝑟𝑘) = 𝑖 ∈ ℕ (𝑑𝑟𝑖)
21 ss2iun 4939 . . . 4 (∀𝑖 ∈ ℕ (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) → 𝑖 ∈ ℕ (𝑑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
22 1ex 10902 . . . . . . . 8 1 ∈ V
2322prid2 4696 . . . . . . 7 1 ∈ {0, 1}
24 oveq2 7263 . . . . . . . . 9 (𝑗 = 1 → (𝑑𝑟𝑗) = (𝑑𝑟1))
25 relexp1g 14665 . . . . . . . . . 10 (𝑑 ∈ V → (𝑑𝑟1) = 𝑑)
2625elv 3428 . . . . . . . . 9 (𝑑𝑟1) = 𝑑
2724, 26eqtrdi 2795 . . . . . . . 8 (𝑗 = 1 → (𝑑𝑟𝑗) = 𝑑)
2827ssiun2s 4974 . . . . . . 7 (1 ∈ {0, 1} → 𝑑 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
2923, 28ax-mp 5 . . . . . 6 𝑑 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
3029a1i 11 . . . . 5 (𝑖 ∈ ℕ → 𝑑 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
31 ovex 7288 . . . . . . 7 (𝑑𝑟𝑗) ∈ V
325, 31iunex 7784 . . . . . 6 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V
3332a1i 11 . . . . 5 (𝑖 ∈ ℕ → 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V)
34 nnnn0 12170 . . . . 5 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
3530, 33, 34relexpss1d 41202 . . . 4 (𝑖 ∈ ℕ → (𝑑𝑟𝑖) ⊆ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
3621, 35mprg 3077 . . 3 𝑖 ∈ ℕ (𝑑𝑟𝑖) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
3720, 36eqsstri 3951 . 2 𝑘 ∈ ℕ (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
38 oveq2 7263 . . . . 5 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1))
39 relexp1g 14665 . . . . . . 7 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) ∈ V → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗))
4032, 39ax-mp 5 . . . . . 6 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)
41 oveq2 7263 . . . . . . 7 (𝑗 = 𝑘 → (𝑑𝑟𝑗) = (𝑑𝑟𝑘))
4241cbviunv 4966 . . . . . 6 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
4340, 42eqtri 2766 . . . . 5 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟1) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘)
4438, 43eqtrdi 2795 . . . 4 (𝑖 = 1 → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = 𝑘 ∈ {0, 1} (𝑑𝑟𝑘))
4544ssiun2s 4974 . . 3 (1 ∈ ℕ → 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖))
4611, 45ax-mp 5 . 2 𝑘 ∈ {0, 1} (𝑑𝑟𝑘) ⊆ 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖)
47 iunss 4971 . . . 4 ( 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ ∀𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
48 iuneq1 4937 . . . . . . . 8 ({0, 1} = ({0} ∪ {1}) → 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑗 ∈ ({0} ∪ {1})(𝑑𝑟𝑗))
497, 48ax-mp 5 . . . . . . 7 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = 𝑗 ∈ ({0} ∪ {1})(𝑑𝑟𝑗)
50 iunxun 5019 . . . . . . 7 𝑗 ∈ ({0} ∪ {1})(𝑑𝑟𝑗) = ( 𝑗 ∈ {0} (𝑑𝑟𝑗) ∪ 𝑗 ∈ {1} (𝑑𝑟𝑗))
51 c0ex 10900 . . . . . . . . 9 0 ∈ V
52 oveq2 7263 . . . . . . . . 9 (𝑗 = 0 → (𝑑𝑟𝑗) = (𝑑𝑟0))
5351, 52iunxsn 5016 . . . . . . . 8 𝑗 ∈ {0} (𝑑𝑟𝑗) = (𝑑𝑟0)
5422, 24iunxsn 5016 . . . . . . . 8 𝑗 ∈ {1} (𝑑𝑟𝑗) = (𝑑𝑟1)
5553, 54uneq12i 4091 . . . . . . 7 ( 𝑗 ∈ {0} (𝑑𝑟𝑗) ∪ 𝑗 ∈ {1} (𝑑𝑟𝑗)) = ((𝑑𝑟0) ∪ (𝑑𝑟1))
5649, 50, 553eqtri 2770 . . . . . 6 𝑗 ∈ {0, 1} (𝑑𝑟𝑗) = ((𝑑𝑟0) ∪ (𝑑𝑟1))
5756oveq1i 7265 . . . . 5 ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖)
58 oveq2 7263 . . . . . . 7 (𝑥 = 1 → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1))
5958sseq1d 3948 . . . . . 6 (𝑥 = 1 → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
60 oveq2 7263 . . . . . . 7 (𝑥 = 𝑦 → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦))
6160sseq1d 3948 . . . . . 6 (𝑥 = 𝑦 → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
62 oveq2 7263 . . . . . . 7 (𝑥 = (𝑦 + 1) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)))
6362sseq1d 3948 . . . . . 6 (𝑥 = (𝑦 + 1) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
64 oveq2 7263 . . . . . . 7 (𝑥 = 𝑖 → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) = (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖))
6564sseq1d 3948 . . . . . 6 (𝑥 = 𝑖 → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑥) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ↔ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
66 ovex 7288 . . . . . . . . 9 (𝑑𝑟0) ∈ V
67 ovex 7288 . . . . . . . . 9 (𝑑𝑟1) ∈ V
6866, 67unex 7574 . . . . . . . 8 ((𝑑𝑟0) ∪ (𝑑𝑟1)) ∈ V
69 relexp1g 14665 . . . . . . . 8 (((𝑑𝑟0) ∪ (𝑑𝑟1)) ∈ V → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) = ((𝑑𝑟0) ∪ (𝑑𝑟1)))
7068, 69ax-mp 5 . . . . . . 7 (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) = ((𝑑𝑟0) ∪ (𝑑𝑟1))
71 0nn0 12178 . . . . . . . . 9 0 ∈ ℕ0
72 oveq2 7263 . . . . . . . . . 10 (𝑘 = 0 → (𝑑𝑟𝑘) = (𝑑𝑟0))
7372ssiun2s 4974 . . . . . . . . 9 (0 ∈ ℕ0 → (𝑑𝑟0) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
7471, 73ax-mp 5 . . . . . . . 8 (𝑑𝑟0) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
75 1nn0 12179 . . . . . . . . 9 1 ∈ ℕ0
76 oveq2 7263 . . . . . . . . . 10 (𝑘 = 1 → (𝑑𝑟𝑘) = (𝑑𝑟1))
7776ssiun2s 4974 . . . . . . . . 9 (1 ∈ ℕ0 → (𝑑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
7875, 77ax-mp 5 . . . . . . . 8 (𝑑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
7974, 78unssi 4115 . . . . . . 7 ((𝑑𝑟0) ∪ (𝑑𝑟1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
8070, 79eqsstri 3951 . . . . . 6 (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟1) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
81 simpl 482 . . . . . . . . 9 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → 𝑦 ∈ ℕ)
82 relexpsucnnr 14664 . . . . . . . . 9 ((((𝑑𝑟0) ∪ (𝑑𝑟1)) ∈ V ∧ 𝑦 ∈ ℕ) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) = ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))))
8368, 81, 82sylancr 586 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) = ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))))
84 coss1 5753 . . . . . . . . . 10 ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))))
85 coundi 6140 . . . . . . . . . . 11 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) = (( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) ∪ ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)))
86 relexp0g 14661 . . . . . . . . . . . . . . . 16 (𝑑 ∈ V → (𝑑𝑟0) = ( I ↾ (dom 𝑑 ∪ ran 𝑑)))
8786elv 3428 . . . . . . . . . . . . . . 15 (𝑑𝑟0) = ( I ↾ (dom 𝑑 ∪ ran 𝑑))
8887coeq2i 5758 . . . . . . . . . . . . . 14 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) = ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑)))
89 coiun1 41149 . . . . . . . . . . . . . 14 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑)))
90 coires1 6157 . . . . . . . . . . . . . . . 16 ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑))
9190a1i 11 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)))
9291iuneq2i 4942 . . . . . . . . . . . . . 14 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ ( I ↾ (dom 𝑑 ∪ ran 𝑑))) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑))
9388, 89, 923eqtri 2770 . . . . . . . . . . . . 13 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑))
94 ss2iun 4939 . . . . . . . . . . . . . 14 (∀𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ (𝑑𝑟𝑘) → 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
95 resss 5905 . . . . . . . . . . . . . . 15 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ (𝑑𝑟𝑘)
9695a1i 11 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ (𝑑𝑟𝑘))
9794, 96mprg 3077 . . . . . . . . . . . . 13 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ↾ (dom 𝑑 ∪ ran 𝑑)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
9893, 97eqsstri 3951 . . . . . . . . . . . 12 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
99 coiun1 41149 . . . . . . . . . . . . . 14 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)) = 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1))
100 iunss2 4975 . . . . . . . . . . . . . . 15 (∀𝑘 ∈ ℕ0𝑖 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) → 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑖 ∈ ℕ0 (𝑑𝑟𝑖))
101 peano2nn0 12203 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
102 sbcel1v 3783 . . . . . . . . . . . . . . . . . . 19 ([(𝑘 + 1) / 𝑖]𝑖 ∈ ℕ0 ↔ (𝑘 + 1) ∈ ℕ0)
103101, 102sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0[(𝑘 + 1) / 𝑖]𝑖 ∈ ℕ0)
104 vex 3426 . . . . . . . . . . . . . . . . . . . . 21 𝑑 ∈ V
105 relexpaddss 41215 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ0 ∧ 1 ∈ ℕ0𝑑 ∈ V) → ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟(𝑘 + 1)))
10675, 104, 105mp3an23 1451 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ℕ0 → ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟(𝑘 + 1)))
107 ovex 7288 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 + 1) ∈ V
108 csbconstg 3847 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) = ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)))
109107, 108ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) = ((𝑑𝑟𝑘) ∘ (𝑑𝑟1))
110 csbov2g 7301 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖(𝑑𝑟𝑖) = (𝑑𝑟(𝑘 + 1) / 𝑖𝑖))
111 csbvarg 4362 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖𝑖 = (𝑘 + 1))
112111oveq2d 7271 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 + 1) ∈ V → (𝑑𝑟(𝑘 + 1) / 𝑖𝑖) = (𝑑𝑟(𝑘 + 1)))
113110, 112eqtrd 2778 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 + 1) ∈ V → (𝑘 + 1) / 𝑖(𝑑𝑟𝑖) = (𝑑𝑟(𝑘 + 1)))
114107, 113ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑘 + 1) / 𝑖(𝑑𝑟𝑖) = (𝑑𝑟(𝑘 + 1))
115106, 109, 1143sstr4g 3962 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ ℕ0(𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑘 + 1) / 𝑖(𝑑𝑟𝑖))
116 sbcssg 4451 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 + 1) ∈ V → ([(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) ↔ (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑘 + 1) / 𝑖(𝑑𝑟𝑖)))
117107, 116ax-mp 5 . . . . . . . . . . . . . . . . . . 19 ([(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) ↔ (𝑘 + 1) / 𝑖((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑘 + 1) / 𝑖(𝑑𝑟𝑖))
118115, 117sylibr 233 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ℕ0[(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖))
119 sbcan 3763 . . . . . . . . . . . . . . . . . 18 ([(𝑘 + 1) / 𝑖](𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)) ↔ ([(𝑘 + 1) / 𝑖]𝑖 ∈ ℕ0[(𝑘 + 1) / 𝑖]((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
120103, 118, 119sylanbrc 582 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0[(𝑘 + 1) / 𝑖](𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
121120spesbcd 3812 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0 → ∃𝑖(𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
122 df-rex 3069 . . . . . . . . . . . . . . . 16 (∃𝑖 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖) ↔ ∃𝑖(𝑖 ∈ ℕ0 ∧ ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖)))
123121, 122sylibr 233 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → ∃𝑖 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ (𝑑𝑟𝑖))
124100, 123mprg 3077 . . . . . . . . . . . . . 14 𝑘 ∈ ℕ0 ((𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑖 ∈ ℕ0 (𝑑𝑟𝑖)
12599, 124eqsstri 3951 . . . . . . . . . . . . 13 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑖 ∈ ℕ0 (𝑑𝑟𝑖)
126 oveq2 7263 . . . . . . . . . . . . . 14 (𝑖 = 𝑘 → (𝑑𝑟𝑖) = (𝑑𝑟𝑘))
127126cbviunv 4966 . . . . . . . . . . . . 13 𝑖 ∈ ℕ0 (𝑑𝑟𝑖) = 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
128125, 127sseqtri 3953 . . . . . . . . . . . 12 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
12998, 128unssi 4115 . . . . . . . . . . 11 (( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟0)) ∪ ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
13085, 129eqsstri 3951 . . . . . . . . . 10 ( 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
13184, 130sstrdi 3929 . . . . . . . . 9 ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
132131adantl 481 . . . . . . . 8 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ∘ ((𝑑𝑟0) ∪ (𝑑𝑟1))) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
13383, 132eqsstrd 3955 . . . . . . 7 ((𝑦 ∈ ℕ ∧ (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
134133ex 412 . . . . . 6 (𝑦 ∈ ℕ → ((((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑦) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟(𝑦 + 1)) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)))
13559, 61, 63, 65, 80, 134nnind 11921 . . . . 5 (𝑖 ∈ ℕ → (((𝑑𝑟0) ∪ (𝑑𝑟1))↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
13657, 135eqsstrid 3965 . . . 4 (𝑖 ∈ ℕ → ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘))
13747, 136mprgbir 3078 . . 3 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ ℕ0 (𝑑𝑟𝑘)
138 iuneq1 4937 . . . 4 (ℕ0 = (ℕ ∪ {0, 1}) → 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ {0, 1})(𝑑𝑟𝑘))
13918, 138ax-mp 5 . . 3 𝑘 ∈ ℕ0 (𝑑𝑟𝑘) = 𝑘 ∈ (ℕ ∪ {0, 1})(𝑑𝑟𝑘)
140137, 139sseqtri 3953 . 2 𝑖 ∈ ℕ ( 𝑗 ∈ {0, 1} (𝑑𝑟𝑗)↑𝑟𝑖) ⊆ 𝑘 ∈ (ℕ ∪ {0, 1})(𝑑𝑟𝑘)
1411, 2, 3, 4, 5, 18, 37, 46, 140comptiunov2i 41203 1 (t+ ∘ r*) = t*
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wrex 3064  Vcvv 3422  [wsbc 3711  csb 3828  cun 3881  wss 3883  {csn 4558  {cpr 4560   ciun 4921   I cid 5479  dom cdm 5580  ran crn 5581  cres 5582  ccom 5584  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  cn 11903  0cn0 12163  t+ctcl 14624  t*crtcl 14625  𝑟crelexp 14658  r*crcl 41169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-trcl 14626  df-rtrcl 14627  df-relexp 14659  df-rcl 41170
This theorem is referenced by:  cortrclrcl  41240  cotrclrtrcl  41241  cortrclrtrcl  41242
  Copyright terms: Public domain W3C validator