MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sscn Structured version   Visualization version   GIF version

Theorem nn0sscn 12513
Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.)
Assertion
Ref Expression
nn0sscn 0 ⊆ ℂ

Proof of Theorem nn0sscn
StepHypRef Expression
1 df-n0 12509 . 2 0 = (ℕ ∪ {0})
2 nnsscn 12253 . . 3 ℕ ⊆ ℂ
3 0cn 11242 . . . 4 0 ∈ ℂ
4 snssi 4814 . . . 4 (0 ∈ ℂ → {0} ⊆ ℂ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℂ
62, 5unssi 4185 . 2 (ℕ ∪ {0}) ⊆ ℂ
71, 6eqsstri 4014 1 0 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cun 3945  wss 3947  {csn 4630  cc 11142  0cc0 11144  cn 12248  0cn0 12508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pr 5431  ax-un 7744  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-mulcl 11206  ax-i2m1 11212
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-ov 7427  df-om 7875  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-nn 12249  df-n0 12509
This theorem is referenced by:  nn0cn  12518  nn0cni  12520  nn0expcl  14078  fsumnn0cl  15720  fprodnn0cl  15939  nn0risefaccl  16004  divalglem8  16382  cycsubmcom  19164  nn0srg  21375  psrridm  21911  psdmul  22095  tdeglem3  26011  tdeglem3OLD  26012  eulerpartlems  33985  breprexplemc  34269  sticksstones17  41639  sticksstones18  41640  deg1mhm  42631
  Copyright terms: Public domain W3C validator