MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sscn Structured version   Visualization version   GIF version

Theorem nn0sscn 12478
Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.)
Assertion
Ref Expression
nn0sscn 0 ⊆ ℂ

Proof of Theorem nn0sscn
StepHypRef Expression
1 df-n0 12474 . 2 0 = (ℕ ∪ {0})
2 nnsscn 12218 . . 3 ℕ ⊆ ℂ
3 0cn 11207 . . . 4 0 ∈ ℂ
4 snssi 4806 . . . 4 (0 ∈ ℂ → {0} ⊆ ℂ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℂ
62, 5unssi 4180 . 2 (ℕ ∪ {0}) ⊆ ℂ
71, 6eqsstri 4011 1 0 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  cun 3941  wss 3943  {csn 4623  cc 11107  0cc0 11109  cn 12213  0cn0 12473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-nn 12214  df-n0 12474
This theorem is referenced by:  nn0cn  12483  nn0cni  12485  nn0expcl  14044  fsumnn0cl  15686  fprodnn0cl  15905  nn0risefaccl  15970  divalglem8  16348  cycsubmcom  19128  nn0srg  21327  psrridm  21862  tdeglem3  25944  tdeglem3OLD  25945  eulerpartlems  33889  breprexplemc  34173  sticksstones17  41521  sticksstones18  41522  deg1mhm  42506
  Copyright terms: Public domain W3C validator