![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0sscn | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0sscn | ⊢ ℕ0 ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12509 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnsscn 12253 | . . 3 ⊢ ℕ ⊆ ℂ | |
3 | 0cn 11242 | . . . 4 ⊢ 0 ∈ ℂ | |
4 | snssi 4814 | . . . 4 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℂ |
6 | 2, 5 | unssi 4185 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℂ |
7 | 1, 6 | eqsstri 4014 | 1 ⊢ ℕ0 ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∪ cun 3945 ⊆ wss 3947 {csn 4630 ℂcc 11142 0cc0 11144 ℕcn 12248 ℕ0cn0 12508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 ax-un 7744 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-mulcl 11206 ax-i2m1 11212 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-nn 12249 df-n0 12509 |
This theorem is referenced by: nn0cn 12518 nn0cni 12520 nn0expcl 14078 fsumnn0cl 15720 fprodnn0cl 15939 nn0risefaccl 16004 divalglem8 16382 cycsubmcom 19164 nn0srg 21375 psrridm 21911 psdmul 22095 tdeglem3 26011 tdeglem3OLD 26012 eulerpartlems 33985 breprexplemc 34269 sticksstones17 41639 sticksstones18 41640 deg1mhm 42631 |
Copyright terms: Public domain | W3C validator |