MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0sscn Structured version   Visualization version   GIF version

Theorem nn0sscn 12476
Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.)
Assertion
Ref Expression
nn0sscn 0 ⊆ ℂ

Proof of Theorem nn0sscn
StepHypRef Expression
1 df-n0 12472 . 2 0 = (ℕ ∪ {0})
2 nnsscn 12216 . . 3 ℕ ⊆ ℂ
3 0cn 11205 . . . 4 0 ∈ ℂ
4 snssi 4811 . . . 4 (0 ∈ ℂ → {0} ⊆ ℂ)
53, 4ax-mp 5 . . 3 {0} ⊆ ℂ
62, 5unssi 4185 . 2 (ℕ ∪ {0}) ⊆ ℂ
71, 6eqsstri 4016 1 0 ⊆ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  cun 3946  wss 3948  {csn 4628  cc 11107  0cc0 11109  cn 12211  0cn0 12471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-mulcl 11171  ax-i2m1 11177
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-nn 12212  df-n0 12472
This theorem is referenced by:  nn0cn  12481  nn0cni  12483  nn0expcl  14040  fsumnn0cl  15681  fprodnn0cl  15900  nn0risefaccl  15965  divalglem8  16342  cycsubmcom  19080  nn0srg  21014  psrridm  21523  tdeglem3  25574  tdeglem3OLD  25575  eulerpartlems  33354  breprexplemc  33639  sticksstones17  40974  sticksstones18  40975  deg1mhm  41939
  Copyright terms: Public domain W3C validator