| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0sscn | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| nn0sscn | ⊢ ℕ0 ⊆ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12403 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnsscn 12151 | . . 3 ⊢ ℕ ⊆ ℂ | |
| 3 | 0cn 11126 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | snssi 4762 | . . . 4 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℂ |
| 6 | 2, 5 | unssi 4144 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℂ |
| 7 | 1, 6 | eqsstri 3984 | 1 ⊢ ℕ0 ⊆ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 {csn 4579 ℂcc 11026 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-n0 12403 |
| This theorem is referenced by: nn0cn 12412 nn0cni 12414 nn0expcl 14000 fsumnn0cl 15661 fprodnn0cl 15882 nn0risefaccl 15947 divalglem8 16329 cycsubmcom 19101 nn0srg 21362 psrridm 21888 psdmul 22069 tdeglem3 25980 eulerpartlems 34330 breprexplemc 34602 sticksstones17 42139 sticksstones18 42140 deg1mhm 43176 |
| Copyright terms: Public domain | W3C validator |