![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0sscn | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the complex numbers. (Contributed by NM, 9-May-2004.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
nn0sscn | ⊢ ℕ0 ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12474 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnsscn 12218 | . . 3 ⊢ ℕ ⊆ ℂ | |
3 | 0cn 11207 | . . . 4 ⊢ 0 ∈ ℂ | |
4 | snssi 4806 | . . . 4 ⊢ (0 ∈ ℂ → {0} ⊆ ℂ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℂ |
6 | 2, 5 | unssi 4180 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℂ |
7 | 1, 6 | eqsstri 4011 | 1 ⊢ ℕ0 ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∪ cun 3941 ⊆ wss 3943 {csn 4623 ℂcc 11107 0cc0 11109 ℕcn 12213 ℕ0cn0 12473 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-mulcl 11171 ax-i2m1 11177 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-nn 12214 df-n0 12474 |
This theorem is referenced by: nn0cn 12483 nn0cni 12485 nn0expcl 14044 fsumnn0cl 15686 fprodnn0cl 15905 nn0risefaccl 15970 divalglem8 16348 cycsubmcom 19128 nn0srg 21327 psrridm 21862 tdeglem3 25944 tdeglem3OLD 25945 eulerpartlems 33889 breprexplemc 34173 sticksstones17 41521 sticksstones18 41522 deg1mhm 42506 |
Copyright terms: Public domain | W3C validator |