Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12217 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 11960 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 10961 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 4746 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 4123 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 3959 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 ∪ cun 3889 ⊆ wss 3891 {csn 4566 ℝcr 10854 0cc0 10855 ℕcn 11956 ℕ0cn0 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-i2m1 10923 ax-1ne0 10924 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-n0 12217 |
This theorem is referenced by: nn0re 12225 nn0rei 12227 nn0red 12277 ssnn0fi 13686 fsuppmapnn0fiublem 13691 fsuppmapnn0fiub 13692 hashxrcl 14053 ramtlecl 16682 ramcl2lem 16691 ramxrcl 16699 0ram2 16703 0ramcl 16705 mdegleb 25210 mdeglt 25211 mdegldg 25212 mdegxrcl 25213 mdegcl 25215 mdegaddle 25220 mdegmullem 25224 deg1mul3le 25262 plyeq0lem 25352 dgrval 25370 dgrcl 25375 dgrub 25376 dgrlb 25378 aannenlem2 25470 taylfval 25499 tgcgr4 26873 motcgrg 26886 hashxpe 31106 dplti 31158 xrsmulgzz 31266 nn0omnd 31524 nn0archi 31526 esumcst 32010 oddpwdc 32300 breprexp 32592 lermxnn0 40752 hbtlem2 40929 ssnn0ssfz 45637 |
Copyright terms: Public domain | W3C validator |