| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12382 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 12129 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 11114 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 4757 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 4138 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3976 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 {csn 4573 ℝcr 11005 0cc0 11006 ℕcn 12125 ℕ0cn0 12381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-n0 12382 |
| This theorem is referenced by: nn0re 12390 nn0rei 12392 nn0red 12443 ssnn0fi 13892 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 hashxrcl 14264 ramtlecl 16912 ramcl2lem 16921 ramxrcl 16929 0ram2 16933 0ramcl 16935 mdegleb 25996 mdeglt 25997 mdegldg 25998 mdegxrcl 25999 mdegcl 26001 mdegaddle 26006 mdegmullem 26010 deg1mul3le 26049 plyeq0lem 26142 dgrval 26160 dgrcl 26165 dgrub 26166 dgrlb 26168 aannenlem2 26264 taylfval 26293 tgcgr4 28509 motcgrg 28522 hashxpe 32789 dplti 32885 xrsmulgzz 32990 nn0omnd 33309 nn0archi 33312 esumcst 34076 oddpwdc 34367 breprexp 34646 lermxnn0 42991 hbtlem2 43165 ssnn0ssfz 48388 |
| Copyright terms: Public domain | W3C validator |