![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12480 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 12223 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 11223 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 4811 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 4185 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 4016 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 {csn 4628 ℝcr 11115 0cc0 11116 ℕcn 12219 ℕ0cn0 12479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-i2m1 11184 ax-1ne0 11185 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-nn 12220 df-n0 12480 |
This theorem is referenced by: nn0re 12488 nn0rei 12490 nn0red 12540 ssnn0fi 13957 fsuppmapnn0fiublem 13962 fsuppmapnn0fiub 13963 hashxrcl 14324 ramtlecl 16940 ramcl2lem 16949 ramxrcl 16957 0ram2 16961 0ramcl 16963 mdegleb 25920 mdeglt 25921 mdegldg 25922 mdegxrcl 25923 mdegcl 25925 mdegaddle 25930 mdegmullem 25934 deg1mul3le 25972 plyeq0lem 26062 dgrval 26080 dgrcl 26085 dgrub 26086 dgrlb 26088 aannenlem2 26181 taylfval 26210 tgcgr4 28215 motcgrg 28228 hashxpe 32452 dplti 32504 xrsmulgzz 32612 nn0omnd 32896 nn0archi 32898 esumcst 33525 oddpwdc 33817 breprexp 34109 lermxnn0 42152 hbtlem2 42329 ssnn0ssfz 47188 |
Copyright terms: Public domain | W3C validator |