Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 11970 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 11713 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 10714 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 4693 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 4073 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 3909 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2113 ∪ cun 3839 ⊆ wss 3841 {csn 4513 ℝcr 10607 0cc0 10608 ℕcn 11709 ℕ0cn0 11969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-i2m1 10676 ax-1ne0 10677 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-ov 7167 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-nn 11710 df-n0 11970 |
This theorem is referenced by: nn0re 11978 nn0rei 11980 nn0red 12030 ssnn0fi 13437 fsuppmapnn0fiublem 13442 fsuppmapnn0fiub 13443 hashxrcl 13803 ramtlecl 16429 ramcl2lem 16438 ramxrcl 16446 0ram2 16450 0ramcl 16452 mdegleb 24809 mdeglt 24810 mdegldg 24811 mdegxrcl 24812 mdegcl 24814 mdegaddle 24819 mdegmullem 24823 deg1mul3le 24861 plyeq0lem 24951 dgrval 24969 dgrcl 24974 dgrub 24975 dgrlb 24977 aannenlem2 25069 taylfval 25098 tgcgr4 26469 motcgrg 26482 hashxpe 30694 dplti 30746 xrsmulgzz 30856 nn0omnd 31109 nn0archi 31111 esumcst 31593 oddpwdc 31883 breprexp 32175 lermxnn0 40328 hbtlem2 40505 ssnn0ssfz 45203 |
Copyright terms: Public domain | W3C validator |