![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12525 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 12268 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 11261 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 4813 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 4201 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 4030 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 {csn 4631 ℝcr 11152 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-nn 12265 df-n0 12525 |
This theorem is referenced by: nn0re 12533 nn0rei 12535 nn0red 12586 ssnn0fi 14023 fsuppmapnn0fiublem 14028 fsuppmapnn0fiub 14029 hashxrcl 14393 ramtlecl 17034 ramcl2lem 17043 ramxrcl 17051 0ram2 17055 0ramcl 17057 mdegleb 26118 mdeglt 26119 mdegldg 26120 mdegxrcl 26121 mdegcl 26123 mdegaddle 26128 mdegmullem 26132 deg1mul3le 26171 plyeq0lem 26264 dgrval 26282 dgrcl 26287 dgrub 26288 dgrlb 26290 aannenlem2 26386 taylfval 26415 tgcgr4 28554 motcgrg 28567 hashxpe 32817 dplti 32872 xrsmulgzz 32994 nn0omnd 33353 nn0archi 33355 esumcst 34044 oddpwdc 34336 breprexp 34627 lermxnn0 42939 hbtlem2 43113 ssnn0ssfz 48194 |
Copyright terms: Public domain | W3C validator |