| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12385 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 12132 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 11117 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 4759 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 4142 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3982 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3901 ⊆ wss 3903 {csn 4577 ℝcr 11008 0cc0 11009 ℕcn 12128 ℕ0cn0 12384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-n0 12385 |
| This theorem is referenced by: nn0re 12393 nn0rei 12395 nn0red 12446 ssnn0fi 13892 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 hashxrcl 14264 ramtlecl 16912 ramcl2lem 16921 ramxrcl 16929 0ram2 16933 0ramcl 16935 mdegleb 25967 mdeglt 25968 mdegldg 25969 mdegxrcl 25970 mdegcl 25972 mdegaddle 25977 mdegmullem 25981 deg1mul3le 26020 plyeq0lem 26113 dgrval 26131 dgrcl 26136 dgrub 26137 dgrlb 26139 aannenlem2 26235 taylfval 26264 tgcgr4 28476 motcgrg 28489 hashxpe 32752 dplti 32845 xrsmulgzz 32963 nn0omnd 33282 nn0archi 33284 esumcst 34030 oddpwdc 34322 breprexp 34601 lermxnn0 42923 hbtlem2 43097 ssnn0ssfz 48333 |
| Copyright terms: Public domain | W3C validator |