| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12419 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 12166 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 11152 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 4768 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 4150 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3990 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 {csn 4585 ℝcr 11043 0cc0 11044 ℕcn 12162 ℕ0cn0 12418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-n0 12419 |
| This theorem is referenced by: nn0re 12427 nn0rei 12429 nn0red 12480 ssnn0fi 13926 fsuppmapnn0fiublem 13931 fsuppmapnn0fiub 13932 hashxrcl 14298 ramtlecl 16947 ramcl2lem 16956 ramxrcl 16964 0ram2 16968 0ramcl 16970 mdegleb 25945 mdeglt 25946 mdegldg 25947 mdegxrcl 25948 mdegcl 25950 mdegaddle 25955 mdegmullem 25959 deg1mul3le 25998 plyeq0lem 26091 dgrval 26109 dgrcl 26114 dgrub 26115 dgrlb 26117 aannenlem2 26213 taylfval 26242 tgcgr4 28434 motcgrg 28447 hashxpe 32705 dplti 32798 xrsmulgzz 32920 nn0omnd 33289 nn0archi 33291 esumcst 34026 oddpwdc 34318 breprexp 34597 lermxnn0 42912 hbtlem2 43086 ssnn0ssfz 48310 |
| Copyright terms: Public domain | W3C validator |