| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12443 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 12190 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 11176 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 4772 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 4154 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 3993 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ℝcr 11067 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-n0 12443 |
| This theorem is referenced by: nn0re 12451 nn0rei 12453 nn0red 12504 ssnn0fi 13950 fsuppmapnn0fiublem 13955 fsuppmapnn0fiub 13956 hashxrcl 14322 ramtlecl 16971 ramcl2lem 16980 ramxrcl 16988 0ram2 16992 0ramcl 16994 mdegleb 25969 mdeglt 25970 mdegldg 25971 mdegxrcl 25972 mdegcl 25974 mdegaddle 25979 mdegmullem 25983 deg1mul3le 26022 plyeq0lem 26115 dgrval 26133 dgrcl 26138 dgrub 26139 dgrlb 26141 aannenlem2 26237 taylfval 26266 tgcgr4 28458 motcgrg 28471 hashxpe 32732 dplti 32825 xrsmulgzz 32947 nn0omnd 33316 nn0archi 33318 esumcst 34053 oddpwdc 34345 breprexp 34624 lermxnn0 42939 hbtlem2 43113 ssnn0ssfz 48337 |
| Copyright terms: Public domain | W3C validator |