| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0ssre | ⊢ ℕ0 ⊆ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12507 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssre 12249 | . . 3 ⊢ ℕ ⊆ ℝ | |
| 3 | 0re 11242 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | snssi 4789 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
| 6 | 2, 5 | unssi 4171 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
| 7 | 1, 6 | eqsstri 4010 | 1 ⊢ ℕ0 ⊆ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 {csn 4606 ℝcr 11133 0cc0 11134 ℕcn 12245 ℕ0cn0 12506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-i2m1 11202 ax-1ne0 11203 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-nn 12246 df-n0 12507 |
| This theorem is referenced by: nn0re 12515 nn0rei 12517 nn0red 12568 ssnn0fi 14008 fsuppmapnn0fiublem 14013 fsuppmapnn0fiub 14014 hashxrcl 14380 ramtlecl 17025 ramcl2lem 17034 ramxrcl 17042 0ram2 17046 0ramcl 17048 mdegleb 26026 mdeglt 26027 mdegldg 26028 mdegxrcl 26029 mdegcl 26031 mdegaddle 26036 mdegmullem 26040 deg1mul3le 26079 plyeq0lem 26172 dgrval 26190 dgrcl 26195 dgrub 26196 dgrlb 26198 aannenlem2 26294 taylfval 26323 tgcgr4 28515 motcgrg 28528 hashxpe 32791 dplti 32884 xrsmulgzz 33006 nn0omnd 33365 nn0archi 33367 esumcst 34099 oddpwdc 34391 breprexp 34670 lermxnn0 42941 hbtlem2 43115 ssnn0ssfz 48291 |
| Copyright terms: Public domain | W3C validator |