Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12284 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 12027 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 11027 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 4747 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 4125 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 3960 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 ∪ cun 3890 ⊆ wss 3892 {csn 4565 ℝcr 10920 0cc0 10921 ℕcn 12023 ℕ0cn0 12283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-i2m1 10989 ax-1ne0 10990 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-nn 12024 df-n0 12284 |
This theorem is referenced by: nn0re 12292 nn0rei 12294 nn0red 12344 ssnn0fi 13755 fsuppmapnn0fiublem 13760 fsuppmapnn0fiub 13761 hashxrcl 14121 ramtlecl 16750 ramcl2lem 16759 ramxrcl 16767 0ram2 16771 0ramcl 16773 mdegleb 25278 mdeglt 25279 mdegldg 25280 mdegxrcl 25281 mdegcl 25283 mdegaddle 25288 mdegmullem 25292 deg1mul3le 25330 plyeq0lem 25420 dgrval 25438 dgrcl 25443 dgrub 25444 dgrlb 25446 aannenlem2 25538 taylfval 25567 tgcgr4 26941 motcgrg 26954 hashxpe 31176 dplti 31228 xrsmulgzz 31336 nn0omnd 31594 nn0archi 31596 esumcst 32080 oddpwdc 32370 breprexp 32662 lermxnn0 40968 hbtlem2 41145 ssnn0ssfz 45929 |
Copyright terms: Public domain | W3C validator |