![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ssre | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the reals. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
nn0ssre | ⊢ ℕ0 ⊆ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12554 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssre 12297 | . . 3 ⊢ ℕ ⊆ ℝ | |
3 | 0re 11292 | . . . 4 ⊢ 0 ∈ ℝ | |
4 | snssi 4833 | . . . 4 ⊢ (0 ∈ ℝ → {0} ⊆ ℝ) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ {0} ⊆ ℝ |
6 | 2, 5 | unssi 4214 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℝ |
7 | 1, 6 | eqsstri 4043 | 1 ⊢ ℕ0 ⊆ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ℝcr 11183 0cc0 11184 ℕcn 12293 ℕ0cn0 12553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-n0 12554 |
This theorem is referenced by: nn0re 12562 nn0rei 12564 nn0red 12614 ssnn0fi 14036 fsuppmapnn0fiublem 14041 fsuppmapnn0fiub 14042 hashxrcl 14406 ramtlecl 17047 ramcl2lem 17056 ramxrcl 17064 0ram2 17068 0ramcl 17070 mdegleb 26123 mdeglt 26124 mdegldg 26125 mdegxrcl 26126 mdegcl 26128 mdegaddle 26133 mdegmullem 26137 deg1mul3le 26176 plyeq0lem 26269 dgrval 26287 dgrcl 26292 dgrub 26293 dgrlb 26295 aannenlem2 26389 taylfval 26418 tgcgr4 28557 motcgrg 28570 hashxpe 32814 dplti 32869 xrsmulgzz 32992 nn0omnd 33338 nn0archi 33340 esumcst 34027 oddpwdc 34319 breprexp 34610 lermxnn0 42907 hbtlem2 43081 ssnn0ssfz 48074 |
Copyright terms: Public domain | W3C validator |