![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0ssz | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0ssz | ⊢ ℕ0 ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12525 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssz 12633 | . . 3 ⊢ ℕ ⊆ ℤ | |
3 | 0z 12622 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | c0ex 11253 | . . . . 5 ⊢ 0 ∈ V | |
5 | 4 | snss 4790 | . . . 4 ⊢ (0 ∈ ℤ ↔ {0} ⊆ ℤ) |
6 | 3, 5 | mpbi 230 | . . 3 ⊢ {0} ⊆ ℤ |
7 | 2, 6 | unssi 4201 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℤ |
8 | 1, 7 | eqsstri 4030 | 1 ⊢ ℕ0 ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∪ cun 3961 ⊆ wss 3963 {csn 4631 0cc0 11153 ℕcn 12264 ℕ0cn0 12524 ℤcz 12611 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-i2m1 11221 ax-1ne0 11222 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 |
This theorem is referenced by: nn0z 12636 nn0zd 12637 nn0zi 12640 nn0ssq 12997 nthruz 16286 oddnn02np1 16382 evennn02n 16384 bitsf1ocnv 16478 pclem 16872 0ram 17054 0ram2 17055 0ramcl 17057 gexex 19886 iscmet3lem3 25338 plyeq0lem 26264 dgrlem 26283 2sqreultblem 27507 archirngz 33179 dffltz 42621 diophrw 42747 diophin 42760 diophun 42761 eq0rabdioph 42764 eqrabdioph 42765 rabdiophlem1 42789 diophren 42801 etransclem48 46238 |
Copyright terms: Public domain | W3C validator |