MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ssz Structured version   Visualization version   GIF version

Theorem nn0ssz 12559
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
Assertion
Ref Expression
nn0ssz 0 ⊆ ℤ

Proof of Theorem nn0ssz
StepHypRef Expression
1 df-n0 12450 . 2 0 = (ℕ ∪ {0})
2 nnssz 12558 . . 3 ℕ ⊆ ℤ
3 0z 12547 . . . 4 0 ∈ ℤ
4 c0ex 11175 . . . . 5 0 ∈ V
54snss 4752 . . . 4 (0 ∈ ℤ ↔ {0} ⊆ ℤ)
63, 5mpbi 230 . . 3 {0} ⊆ ℤ
72, 6unssi 4157 . 2 (ℕ ∪ {0}) ⊆ ℤ
81, 7eqsstri 3996 1 0 ⊆ ℤ
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  cun 3915  wss 3917  {csn 4592  0cc0 11075  cn 12193  0cn0 12449  cz 12536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-i2m1 11143  ax-1ne0 11144  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537
This theorem is referenced by:  nn0z  12561  nn0zd  12562  nn0zi  12565  nn0ssq  12923  nthruz  16228  oddnn02np1  16325  evennn02n  16327  bitsf1ocnv  16421  pclem  16816  0ram  16998  0ram2  16999  0ramcl  17001  gexex  19790  iscmet3lem3  25197  plyeq0lem  26122  dgrlem  26141  2sqreultblem  27366  archirngz  33150  dffltz  42629  diophrw  42754  diophin  42767  diophun  42768  eq0rabdioph  42771  eqrabdioph  42772  rabdiophlem1  42796  diophren  42808  etransclem48  46287
  Copyright terms: Public domain W3C validator