| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssz | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ssz | ⊢ ℕ0 ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12403 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssz 12511 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 3 | 0z 12500 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | c0ex 11128 | . . . . 5 ⊢ 0 ∈ V | |
| 5 | 4 | snss 4739 | . . . 4 ⊢ (0 ∈ ℤ ↔ {0} ⊆ ℤ) |
| 6 | 3, 5 | mpbi 230 | . . 3 ⊢ {0} ⊆ ℤ |
| 7 | 2, 6 | unssi 4144 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℤ |
| 8 | 1, 7 | eqsstri 3984 | 1 ⊢ ℕ0 ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∪ cun 3903 ⊆ wss 3905 {csn 4579 0cc0 11028 ℕcn 12146 ℕ0cn0 12402 ℤcz 12489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-i2m1 11096 ax-1ne0 11097 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 |
| This theorem is referenced by: nn0z 12514 nn0zd 12515 nn0zi 12518 nn0ssq 12876 nthruz 16180 oddnn02np1 16277 evennn02n 16279 bitsf1ocnv 16373 pclem 16768 0ram 16950 0ram2 16951 0ramcl 16953 gexex 19750 iscmet3lem3 25206 plyeq0lem 26131 dgrlem 26150 2sqreultblem 27375 archirngz 33141 dffltz 42607 diophrw 42732 diophin 42745 diophun 42746 eq0rabdioph 42749 eqrabdioph 42750 rabdiophlem1 42774 diophren 42786 etransclem48 46264 |
| Copyright terms: Public domain | W3C validator |