Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ssz | Structured version Visualization version GIF version |
Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nn0ssz | ⊢ ℕ0 ⊆ ℤ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12234 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnssz 12340 | . . 3 ⊢ ℕ ⊆ ℤ | |
3 | 0z 12330 | . . . 4 ⊢ 0 ∈ ℤ | |
4 | c0ex 10969 | . . . . 5 ⊢ 0 ∈ V | |
5 | 4 | snss 4719 | . . . 4 ⊢ (0 ∈ ℤ ↔ {0} ⊆ ℤ) |
6 | 3, 5 | mpbi 229 | . . 3 ⊢ {0} ⊆ ℤ |
7 | 2, 6 | unssi 4119 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℤ |
8 | 1, 7 | eqsstri 3955 | 1 ⊢ ℕ0 ⊆ ℤ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 {csn 4561 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 ℤcz 12319 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 |
This theorem is referenced by: nn0z 12343 nn0zi 12345 nn0zd 12424 nn0ssq 12697 nthruz 15962 oddnn02np1 16057 evennn02n 16059 bitsf1ocnv 16151 pclem 16539 0ram 16721 0ram2 16722 0ramcl 16724 gexex 19454 iscmet3lem3 24454 plyeq0lem 25371 dgrlem 25390 2sqreultblem 26596 archirngz 31443 dffltz 40471 diophrw 40581 diophin 40594 diophun 40595 eq0rabdioph 40598 eqrabdioph 40599 rabdiophlem1 40623 diophren 40635 etransclem48 43823 |
Copyright terms: Public domain | W3C validator |