| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0ssz | Structured version Visualization version GIF version | ||
| Description: Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.) |
| Ref | Expression |
|---|---|
| nn0ssz | ⊢ ℕ0 ⊆ ℤ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-n0 12379 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 2 | nnssz 12487 | . . 3 ⊢ ℕ ⊆ ℤ | |
| 3 | 0z 12476 | . . . 4 ⊢ 0 ∈ ℤ | |
| 4 | c0ex 11103 | . . . . 5 ⊢ 0 ∈ V | |
| 5 | 4 | snss 4737 | . . . 4 ⊢ (0 ∈ ℤ ↔ {0} ⊆ ℤ) |
| 6 | 3, 5 | mpbi 230 | . . 3 ⊢ {0} ⊆ ℤ |
| 7 | 2, 6 | unssi 4141 | . 2 ⊢ (ℕ ∪ {0}) ⊆ ℤ |
| 8 | 1, 7 | eqsstri 3981 | 1 ⊢ ℕ0 ⊆ ℤ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 {csn 4576 0cc0 11003 ℕcn 12122 ℕ0cn0 12378 ℤcz 12465 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-i2m1 11071 ax-1ne0 11072 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-neg 11344 df-nn 12123 df-n0 12379 df-z 12466 |
| This theorem is referenced by: nn0z 12490 nn0zd 12491 nn0zi 12494 nn0ssq 12852 nthruz 16159 oddnn02np1 16256 evennn02n 16258 bitsf1ocnv 16352 pclem 16747 0ram 16929 0ram2 16930 0ramcl 16932 gexex 19763 iscmet3lem3 25215 plyeq0lem 26140 dgrlem 26159 2sqreultblem 27384 archirngz 33153 dffltz 42666 diophrw 42791 diophin 42804 diophun 42805 eq0rabdioph 42808 eqrabdioph 42809 rabdiophlem1 42833 diophren 42845 etransclem48 46319 |
| Copyright terms: Public domain | W3C validator |