Home | Metamath
Proof Explorer Theorem List (p. 125 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29274) |
Hilbert Space Explorer
(29275-30797) |
Users' Mathboxes
(30798-46480) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | zneo 12401 | No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. (Contributed by NM, 31-Jul-2004.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (2 · 𝐴) ≠ ((2 · 𝐵) + 1)) | ||
Theorem | nneo 12402 | A positive integer is even or odd but not both. (Contributed by NM, 1-Jan-2006.) (Proof shortened by Mario Carneiro, 18-May-2014.) |
⊢ (𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ)) | ||
Theorem | nneoi 12403 | A positive integer is even or odd but not both. (Contributed by NM, 20-Aug-2001.) |
⊢ 𝑁 ∈ ℕ ⇒ ⊢ ((𝑁 / 2) ∈ ℕ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℕ) | ||
Theorem | zeo 12404 | An integer is even or odd. (Contributed by NM, 1-Jan-2006.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | zeo2 12405 | An integer is even or odd but not both. (Contributed by Mario Carneiro, 12-Sep-2015.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ↔ ¬ ((𝑁 + 1) / 2) ∈ ℤ)) | ||
Theorem | peano2uz2 12406* | Second Peano postulate for upper integers. (Contributed by NM, 3-Oct-2004.) |
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) → (𝐵 + 1) ∈ {𝑥 ∈ ℤ ∣ 𝐴 ≤ 𝑥}) | ||
Theorem | peano5uzi 12407* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 3-May-2014.) |
⊢ 𝑁 ∈ ℤ ⇒ ⊢ ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴) | ||
Theorem | peano5uzti 12408* | Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005.) (Revised by Mario Carneiro, 25-Jul-2013.) |
⊢ (𝑁 ∈ ℤ → ((𝑁 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑥 + 1) ∈ 𝐴) → {𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘} ⊆ 𝐴)) | ||
Theorem | dfuzi 12409* | An expression for the upper integers that start at 𝑁 that is analogous to dfnn2 11984 for positive integers. (Contributed by NM, 6-Jul-2005.) (Proof shortened by Mario Carneiro, 3-May-2014.) |
⊢ 𝑁 ∈ ℤ ⇒ ⊢ {𝑧 ∈ ℤ ∣ 𝑁 ≤ 𝑧} = ∩ {𝑥 ∣ (𝑁 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑦 + 1) ∈ 𝑥)} | ||
Theorem | uzind 12410* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 5-Jul-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜏) | ||
Theorem | uzind2 12411* | Induction on the upper integers that start after an integer 𝑀. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005.) |
⊢ (𝑗 = (𝑀 + 1) → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑘 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁) → 𝜏) | ||
Theorem | uzind3 12412* | Induction on the upper integers that start at an integer 𝑀. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction step. (Contributed by NM, 26-Jul-2005.) |
⊢ (𝑗 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑗 = 𝑚 → (𝜑 ↔ 𝜒)) & ⊢ (𝑗 = (𝑚 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑗 = 𝑁 → (𝜑 ↔ 𝜏)) & ⊢ (𝑀 ∈ ℤ → 𝜓) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑚 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ {𝑘 ∈ ℤ ∣ 𝑀 ≤ 𝑘}) → 𝜏) | ||
Theorem | nn0ind 12413* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 13-May-2004.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | nn0indALT 12414* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The last four hypotheses give us the substitution instances we need; the first two are the basis and the induction step. Either nn0ind 12413 or nn0indALT 12414 may be used; see comment for nnind 11989. (Contributed by NM, 28-Nov-2005.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) & ⊢ 𝜓 & ⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | nn0indd 12415* | Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.) |
⊢ (𝑥 = 0 → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ ℕ0) → 𝜂) | ||
Theorem | fzind 12416* | Induction on the integers from 𝑀 to 𝑁 inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑥 = 𝑀 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ≤ 𝑁) → 𝜓) & ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀 ≤ 𝑦 ∧ 𝑦 < 𝑁)) → (𝜒 → 𝜃)) ⇒ ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ≤ 𝐾 ∧ 𝐾 ≤ 𝑁)) → 𝜏) | ||
Theorem | fnn0ind 12417* | Induction on the integers from 0 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐾 → (𝜑 ↔ 𝜏)) & ⊢ (𝑁 ∈ ℕ0 → 𝜓) & ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑦 < 𝑁) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℕ0 ∧ 𝐾 ≤ 𝑁) → 𝜏) | ||
Theorem | nn0ind-raph 12418* | Principle of Mathematical Induction (inference schema) on nonnegative integers. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Raph Levien remarks: "This seems a bit painful. I wonder if an explicit substitution version would be easier." (Contributed by Raph Levien, 10-Apr-2004.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ ℕ0 → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ ℕ0 → 𝜏) | ||
Theorem | zindd 12419* | Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝑥 = 0 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 + 1) → (𝜑 ↔ 𝜏)) & ⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜂)) & ⊢ (𝜁 → 𝜓) & ⊢ (𝜁 → (𝑦 ∈ ℕ0 → (𝜒 → 𝜏))) & ⊢ (𝜁 → (𝑦 ∈ ℕ → (𝜒 → 𝜃))) ⇒ ⊢ (𝜁 → (𝐴 ∈ ℤ → 𝜂)) | ||
Theorem | btwnz 12420* | Any real number can be sandwiched between two integers. Exercise 2 of [Apostol] p. 28. (Contributed by NM, 10-Nov-2004.) |
⊢ (𝐴 ∈ ℝ → (∃𝑥 ∈ ℤ 𝑥 < 𝐴 ∧ ∃𝑦 ∈ ℤ 𝐴 < 𝑦)) | ||
Theorem | nn0zd 12421 | A positive integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ0) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
Theorem | nnzd 12422 | A nonnegative integer is an integer. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℕ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℤ) | ||
Theorem | zred 12423 | An integer is a real number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℝ) | ||
Theorem | zcnd 12424 | An integer is a complex number. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → 𝐴 ∈ ℂ) | ||
Theorem | znegcld 12425 | Closure law for negative integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → -𝐴 ∈ ℤ) | ||
Theorem | peano2zd 12426 | Deduction from second Peano postulate generalized to integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 + 1) ∈ ℤ) | ||
Theorem | zaddcld 12427 | Closure of addition of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℤ) | ||
Theorem | zsubcld 12428 | Closure of subtraction of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℤ) | ||
Theorem | zmulcld 12429 | Closure of multiplication of integers. (Contributed by Mario Carneiro, 28-May-2016.) |
⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) ∈ ℤ) | ||
Theorem | znnn0nn 12430 | The negative of a negative integer, is a natural number. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝑁 ∈ ℤ ∧ ¬ 𝑁 ∈ ℕ0) → -𝑁 ∈ ℕ) | ||
Theorem | zadd2cl 12431 | Increasing an integer by 2 results in an integer. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
⊢ (𝑁 ∈ ℤ → (𝑁 + 2) ∈ ℤ) | ||
Theorem | zriotaneg 12432* | The negative of the unique integer such that 𝜑. (Contributed by AV, 1-Dec-2018.) |
⊢ (𝑥 = -𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ ℤ 𝜑 → (℩𝑥 ∈ ℤ 𝜑) = -(℩𝑦 ∈ ℤ 𝜓)) | ||
Theorem | suprfinzcl 12433 | The supremum of a nonempty finite set of integers is a member of the set. (Contributed by AV, 1-Oct-2019.) |
⊢ ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ 𝐴 ∈ Fin) → sup(𝐴, ℝ, < ) ∈ 𝐴) | ||
Syntax | cdc 12434 | Constant used for decimal constructor. |
class ;𝐴𝐵 | ||
Definition | df-dec 12435 | Define the "decimal constructor", which is used to build up "decimal integers" or "numeric terms" in base 10. For example, (;;;1000 + ;;;2000) = ;;;3000 1kp2ke3k 28804. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 1-Aug-2021.) |
⊢ ;𝐴𝐵 = (((9 + 1) · 𝐴) + 𝐵) | ||
Theorem | 9p1e10 12436 | 9 + 1 = 10. (Contributed by Mario Carneiro, 18-Apr-2015.) (Revised by Stanislas Polu, 7-Apr-2020.) (Revised by AV, 1-Aug-2021.) |
⊢ (9 + 1) = ;10 | ||
Theorem | dfdec10 12437 | Version of the definition of the "decimal constructor" using ;10 instead of the symbol 10. Of course, this statement cannot be used as definition, because it uses the "decimal constructor". (Contributed by AV, 1-Aug-2021.) |
⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | ||
Theorem | decex 12438 | A decimal number is a set. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ ;𝐴𝐵 ∈ V | ||
Theorem | deceq1 12439 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ;𝐴𝐶 = ;𝐵𝐶) | ||
Theorem | deceq2 12440 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (𝐴 = 𝐵 → ;𝐶𝐴 = ;𝐶𝐵) | ||
Theorem | deceq1i 12441 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐶 | ||
Theorem | deceq2i 12442 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ ;𝐶𝐴 = ;𝐶𝐵 | ||
Theorem | deceq12i 12443 | Equality theorem for the decimal constructor. (Contributed by Mario Carneiro, 17-Apr-2015.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ ;𝐴𝐶 = ;𝐵𝐷 | ||
Theorem | numnncl 12444 | Closure for a numeral (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ | ||
Theorem | num0u 12445 | Add a zero in the units place. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (𝑇 · 𝐴) = ((𝑇 · 𝐴) + 0) | ||
Theorem | num0h 12446 | Add a zero in the higher places. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 = ((𝑇 · 0) + 𝐴) | ||
Theorem | numcl 12447 | Closure for a decimal integer (with units place). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) ∈ ℕ0 | ||
Theorem | numsuc 12448 | The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐴) + 𝐶) | ||
Theorem | deccl 12449 | Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ ;𝐴𝐵 ∈ ℕ0 | ||
Theorem | 10nn 12450 | 10 is a positive integer. (Contributed by NM, 8-Nov-2012.) (Revised by AV, 6-Sep-2021.) |
⊢ ;10 ∈ ℕ | ||
Theorem | 10pos 12451 | The number 10 is positive. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) |
⊢ 0 < ;10 | ||
Theorem | 10nn0 12452 | 10 is a nonnegative integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ ;10 ∈ ℕ0 | ||
Theorem | 10re 12453 | The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
⊢ ;10 ∈ ℝ | ||
Theorem | decnncl 12454 | Closure for a numeral. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ ;𝐴𝐵 ∈ ℕ | ||
Theorem | dec0u 12455 | Add a zero in the units place. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ (;10 · 𝐴) = ;𝐴0 | ||
Theorem | dec0h 12456 | Add a zero in the higher places. (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 ⇒ ⊢ 𝐴 = ;0𝐴 | ||
Theorem | numnncl2 12457 | Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 9-Mar-2015.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ ⇒ ⊢ ((𝑇 · 𝐴) + 0) ∈ ℕ | ||
Theorem | decnncl2 12458 | Closure for a decimal integer (zero units place). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ ⇒ ⊢ ;𝐴0 ∈ ℕ | ||
Theorem | numlt 12459 | Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐵) < ((𝑇 · 𝐴) + 𝐶) | ||
Theorem | numltc 12460 | Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ((𝑇 · 𝐴) + 𝐶) < ((𝑇 · 𝐵) + 𝐷) | ||
Theorem | le9lt10 12461 | A "decimal digit" (i.e. a nonnegative integer less than or equal to 9) is less then 10. (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐴 ≤ 9 ⇒ ⊢ 𝐴 < ;10 | ||
Theorem | declt 12462 | Comparing two decimal integers (equal higher places). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ & ⊢ 𝐵 < 𝐶 ⇒ ⊢ ;𝐴𝐵 < ;𝐴𝐶 | ||
Theorem | decltc 12463 | Comparing two decimal integers (unequal higher places). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 < ;10 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
Theorem | declth 12464 | Comparing two decimal integers (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 < ;𝐵𝐷 | ||
Theorem | decsuc 12465 | The successor of a decimal integer (no carry). (Contributed by Mario Carneiro, 17-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ (𝐵 + 1) = 𝐶 & ⊢ 𝑁 = ;𝐴𝐵 ⇒ ⊢ (𝑁 + 1) = ;𝐴𝐶 | ||
Theorem | 3declth 12466 | Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐸 ≤ 9 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
Theorem | 3decltc 12467 | Comparing two decimal integers with three "digits" (unequal higher places). (Contributed by AV, 15-Jun-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐴 < 𝐵 & ⊢ 𝐶 < ;10 & ⊢ 𝐸 < ;10 ⇒ ⊢ ;;𝐴𝐶𝐸 < ;;𝐵𝐷𝐹 | ||
Theorem | decle 12468 | Comparing two decimal integers (equal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐵 ≤ 𝐶 ⇒ ⊢ ;𝐴𝐵 ≤ ;𝐴𝐶 | ||
Theorem | decleh 12469 | Comparing two decimal integers (unequal higher places). (Contributed by AV, 17-Aug-2021.) (Revised by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 & ⊢ 𝐴 < 𝐵 ⇒ ⊢ ;𝐴𝐶 ≤ ;𝐵𝐷 | ||
Theorem | declei 12470 | Comparing a digit to a decimal integer. (Contributed by AV, 17-Aug-2021.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 ⇒ ⊢ 𝐶 ≤ ;𝐴𝐵 | ||
Theorem | numlti 12471 | Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ & ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < 𝑇 ⇒ ⊢ 𝐶 < ((𝑇 · 𝐴) + 𝐵) | ||
Theorem | declti 12472 | Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 < ;10 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
Theorem | decltdi 12473 | Comparing a digit to a decimal integer. (Contributed by AV, 8-Sep-2021.) |
⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐶 ≤ 9 ⇒ ⊢ 𝐶 < ;𝐴𝐵 | ||
Theorem | numsucc 12474 | The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑌 ∈ ℕ0 & ⊢ 𝑇 = (𝑌 + 1) & ⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝑌) ⇒ ⊢ (𝑁 + 1) = ((𝑇 · 𝐵) + 0) | ||
Theorem | decsucc 12475 | The successor of a decimal integer (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ (𝐴 + 1) = 𝐵 & ⊢ 𝑁 = ;𝐴9 ⇒ ⊢ (𝑁 + 1) = ;𝐵0 | ||
Theorem | 1e0p1 12476 | The successor of zero. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 1 = (0 + 1) | ||
Theorem | dec10p 12477 | Ten plus an integer. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
⊢ (;10 + 𝐴) = ;1𝐴 | ||
Theorem | numma 12478 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | nummac 12479 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | numma2c 12480 | Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | numadd 12481 | Add two decimal integers 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | numaddc 12482 | Add two decimal integers 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) & ⊢ 𝐹 ∈ ℕ0 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ((𝑇 · 1) + 𝐹) ⇒ ⊢ (𝑀 + 𝑁) = ((𝑇 · 𝐸) + 𝐹) | ||
Theorem | nummul1c 12483 | The product of a decimal integer with a number. (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑁 · 𝑃) = ((𝑇 · 𝐶) + 𝐷) | ||
Theorem | nummul2c 12484 | The product of a decimal integer with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝑇 ∈ ℕ0 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ((𝑇 · 𝐴) + 𝐵) & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ((𝑇 · 𝐸) + 𝐷) ⇒ ⊢ (𝑃 · 𝑁) = ((𝑇 · 𝐶) + 𝐷) | ||
Theorem | decma 12485 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐶) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decmac 12486 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decma2c 12487 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplier 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + (𝐶 + 𝐺)) = 𝐸 & ⊢ ((𝑃 · 𝐵) + 𝐷) = ;𝐺𝐹 ⇒ ⊢ ((𝑃 · 𝑀) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decadd 12488 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ (𝐴 + 𝐶) = 𝐸 & ⊢ (𝐵 + 𝐷) = 𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
Theorem | decaddc 12489 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ 𝐹 ∈ ℕ0 & ⊢ (𝐵 + 𝐷) = ;1𝐹 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸𝐹 | ||
Theorem | decaddc2 12490 | Add two numerals 𝑀 and 𝑁 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝐶 ∈ ℕ0 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑁 = ;𝐶𝐷 & ⊢ ((𝐴 + 𝐶) + 1) = 𝐸 & ⊢ (𝐵 + 𝐷) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐸0 | ||
Theorem | decrmanc 12491 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (no carry). (Contributed by AV, 16-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ (𝐴 · 𝑃) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = 𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decrmac 12492 | Perform a multiply-add of two numerals 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by AV, 16-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐹 ∈ ℕ0 & ⊢ 𝐺 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐺) = 𝐸 & ⊢ ((𝐵 · 𝑃) + 𝑁) = ;𝐺𝐹 ⇒ ⊢ ((𝑀 · 𝑃) + 𝑁) = ;𝐸𝐹 | ||
Theorem | decaddm10 12493 | The sum of two multiples of 10 is a multiple of 10. (Contributed by AV, 30-Jul-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 ⇒ ⊢ (;𝐴0 + ;𝐵0) = ;(𝐴 + 𝐵)0 | ||
Theorem | decaddi 12494 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐵 + 𝑁) = 𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐴𝐶 | ||
Theorem | decaddci 12495 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ 𝐶 ∈ ℕ0 & ⊢ (𝐵 + 𝑁) = ;1𝐶 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷𝐶 | ||
Theorem | decaddci2 12496 | Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 + 𝑁) = ;10 ⇒ ⊢ (𝑀 + 𝑁) = ;𝐷0 | ||
Theorem | decsubi 12497 | Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 ∈ ℕ0 & ⊢ 𝑀 = ;𝐴𝐵 & ⊢ (𝐴 + 1) = 𝐷 & ⊢ (𝐵 − 𝑁) = 𝐶 ⇒ ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | ||
Theorem | decmul1 12498 | The product of a numeral with a number (no carry). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) Remove hypothesis 𝐷 ∈ ℕ0. (Revised by Steven Nguyen, 7-Dec-2022.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ (𝐴 · 𝑃) = 𝐶 & ⊢ (𝐵 · 𝑃) = 𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
Theorem | decmul1c 12499 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝐴 · 𝑃) + 𝐸) = 𝐶 & ⊢ (𝐵 · 𝑃) = ;𝐸𝐷 ⇒ ⊢ (𝑁 · 𝑃) = ;𝐶𝐷 | ||
Theorem | decmul2c 12500 | The product of a numeral with a number (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
⊢ 𝑃 ∈ ℕ0 & ⊢ 𝐴 ∈ ℕ0 & ⊢ 𝐵 ∈ ℕ0 & ⊢ 𝑁 = ;𝐴𝐵 & ⊢ 𝐷 ∈ ℕ0 & ⊢ 𝐸 ∈ ℕ0 & ⊢ ((𝑃 · 𝐴) + 𝐸) = 𝐶 & ⊢ (𝑃 · 𝐵) = ;𝐸𝐷 ⇒ ⊢ (𝑃 · 𝑁) = ;𝐶𝐷 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |