Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0addcl | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11908 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | id 22 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
3 | df-n0 12164 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
4 | nnaddcl 11926 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
5 | 4 | adantl 481 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
6 | 2, 3, 5 | un0addcl 12196 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
7 | 1, 6 | mpan 686 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ⊆ wss 3883 (class class class)co 7255 ℂcc 10800 + caddc 10805 ℕcn 11903 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-nn 11904 df-n0 12164 |
This theorem is referenced by: nn0addcli 12200 peano2nn0 12203 nn0addcld 12227 nn0readdcl 12229 xnn0xaddcl 12898 difelfznle 13299 elfzodifsumelfzo 13381 modsumfzodifsn 13592 expadd 13753 faclbnd4lem3 13937 faclbnd5 13940 faclbnd6 13941 facavg 13943 ccatlen 14206 ccatlenOLD 14207 ccatrn 14222 ccatalpha 14226 swrdccat2 14310 swrdswrdlem 14345 swrdswrd 14346 swrdccatin1 14366 pfxccatin12lem3 14373 splfv2a 14397 repswswrd 14425 repswccat 14427 cshwcsh2id 14469 fsumnn0cl 15376 bcxmas 15475 nn0risefaccl 15660 eftlub 15746 4sqlem1 16577 psgnunilem2 19018 sylow1lem1 19118 nn0subm 20565 expmhm 20579 psrbagaddcl 21041 psrbagaddclOLD 21042 dvnadd 24998 ply1divex 25206 coemullem 25316 coemulhi 25320 plymul0or 25346 chtublem 26264 2sqlem7 26477 crctcshwlkn0lem4 28079 clwwlkccatlem 28254 fac2xp3 40088 factwoffsmonot 40091 mhphflem 40207 fmtnofac2lem 44908 nn0mnd 45261 ply1mulgsumlem1 45615 |
Copyright terms: Public domain | W3C validator |