![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0addcl | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 12217 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | id 22 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
3 | df-n0 12473 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
4 | nnaddcl 12235 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
5 | 4 | adantl 483 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
6 | 2, 3, 5 | un0addcl 12505 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
7 | 1, 6 | mpan 689 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ⊆ wss 3949 (class class class)co 7409 ℂcc 11108 + caddc 11113 ℕcn 12212 ℕ0cn0 12472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-om 7856 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-nn 12213 df-n0 12473 |
This theorem is referenced by: nn0addcli 12509 peano2nn0 12512 nn0addcld 12536 nn0readdcl 12538 xnn0xaddcl 13214 difelfznle 13615 elfzodifsumelfzo 13698 modsumfzodifsn 13909 expadd 14070 faclbnd4lem3 14255 faclbnd5 14258 faclbnd6 14259 facavg 14261 ccatlen 14525 ccatrn 14539 ccatalpha 14543 swrdccat2 14619 swrdswrdlem 14654 swrdswrd 14655 swrdccatin1 14675 pfxccatin12lem3 14682 splfv2a 14706 repswswrd 14734 repswccat 14736 cshwcsh2id 14779 fsumnn0cl 15682 bcxmas 15781 nn0risefaccl 15966 eftlub 16052 4sqlem1 16881 psgnunilem2 19363 sylow1lem1 19466 nn0subm 21000 expmhm 21014 psrbagaddcl 21481 psrbagaddclOLD 21482 dvnadd 25446 ply1divex 25654 coemullem 25764 coemulhi 25768 plymul0or 25794 chtublem 26714 2sqlem7 26927 crctcshwlkn0lem4 29067 clwwlkccatlem 29242 fac2xp3 41020 factwoffsmonot 41023 mhphflem 41168 fmtnofac2lem 46236 nn0mnd 46589 ply1mulgsumlem1 47067 |
Copyright terms: Public domain | W3C validator |