Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0addcl | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11835 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | id 22 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
3 | df-n0 12091 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
4 | nnaddcl 11853 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
5 | 4 | adantl 485 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
6 | 2, 3, 5 | un0addcl 12123 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
7 | 1, 6 | mpan 690 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2110 ⊆ wss 3866 (class class class)co 7213 ℂcc 10727 + caddc 10732 ℕcn 11830 ℕ0cn0 12090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 df-nn 11831 df-n0 12091 |
This theorem is referenced by: nn0addcli 12127 peano2nn0 12130 nn0addcld 12154 nn0readdcl 12156 xnn0xaddcl 12825 difelfznle 13226 elfzodifsumelfzo 13308 modsumfzodifsn 13517 expadd 13677 faclbnd4lem3 13861 faclbnd5 13864 faclbnd6 13865 facavg 13867 ccatlen 14130 ccatlenOLD 14131 ccatrn 14146 ccatalpha 14150 swrdccat2 14234 swrdswrdlem 14269 swrdswrd 14270 swrdccatin1 14290 pfxccatin12lem3 14297 splfv2a 14321 repswswrd 14349 repswccat 14351 cshwcsh2id 14393 fsumnn0cl 15300 bcxmas 15399 nn0risefaccl 15584 eftlub 15670 4sqlem1 16501 psgnunilem2 18887 sylow1lem1 18987 nn0subm 20418 expmhm 20432 psrbagaddcl 20887 psrbagaddclOLD 20888 dvnadd 24826 ply1divex 25034 coemullem 25144 coemulhi 25148 plymul0or 25174 chtublem 26092 2sqlem7 26305 crctcshwlkn0lem4 27897 clwwlkccatlem 28072 fac2xp3 39882 factwoffsmonot 39885 mhphflem 39994 fmtnofac2lem 44693 nn0mnd 45046 ply1mulgsumlem1 45400 |
Copyright terms: Public domain | W3C validator |