| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0addcl | Structured version Visualization version GIF version | ||
| Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnsscn 12191 | . 2 ⊢ ℕ ⊆ ℂ | |
| 2 | id 22 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
| 3 | df-n0 12443 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 4 | nnaddcl 12209 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
| 6 | 2, 3, 5 | un0addcl 12475 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
| 7 | 1, 6 | mpan 690 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3914 (class class class)co 7387 ℂcc 11066 + caddc 11071 ℕcn 12186 ℕ0cn0 12442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-nn 12187 df-n0 12443 |
| This theorem is referenced by: nn0addcli 12479 peano2nn0 12482 nn0addcld 12507 nn0readdcl 12509 xnn0xaddcl 13195 difelfznle 13603 elfzodifsumelfzo 13692 modsumfzodifsn 13909 expadd 14069 faclbnd4lem3 14260 faclbnd5 14263 faclbnd6 14264 facavg 14266 ccatlen 14540 ccatrn 14554 ccatalpha 14558 swrdccat2 14634 swrdswrdlem 14669 swrdswrd 14670 swrdccatin1 14690 pfxccatin12lem3 14697 splfv2a 14721 repswswrd 14749 repswccat 14751 cshwcsh2id 14794 fsumnn0cl 15702 bcxmas 15801 nn0risefaccl 15988 eftlub 16077 4sqlem1 16919 psgnunilem2 19425 sylow1lem1 19528 nn0subm 21339 expmhm 21353 psrbagaddcl 21833 dvnadd 25831 ply1divex 26042 coemullem 26155 coemulhi 26159 plymul0or 26188 chtublem 27122 2sqlem7 27335 crctcshwlkn0lem4 29743 clwwlkccatlem 29918 mhphflem 42584 fmtnofac2lem 47569 nn0mnd 48167 ply1mulgsumlem1 48375 |
| Copyright terms: Public domain | W3C validator |