Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0addcl | Structured version Visualization version GIF version |
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
nn0addcl | ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnsscn 11978 | . 2 ⊢ ℕ ⊆ ℂ | |
2 | id 22 | . . 3 ⊢ (ℕ ⊆ ℂ → ℕ ⊆ ℂ) | |
3 | df-n0 12234 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
4 | nnaddcl 11996 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) | |
5 | 4 | adantl 482 | . . 3 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ) |
6 | 2, 3, 5 | un0addcl 12266 | . 2 ⊢ ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0) |
7 | 1, 6 | mpan 687 | 1 ⊢ ((𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ⊆ wss 3887 (class class class)co 7275 ℂcc 10869 + caddc 10874 ℕcn 11973 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-ltxr 11014 df-nn 11974 df-n0 12234 |
This theorem is referenced by: nn0addcli 12270 peano2nn0 12273 nn0addcld 12297 nn0readdcl 12299 xnn0xaddcl 12969 difelfznle 13370 elfzodifsumelfzo 13453 modsumfzodifsn 13664 expadd 13825 faclbnd4lem3 14009 faclbnd5 14012 faclbnd6 14013 facavg 14015 ccatlen 14278 ccatlenOLD 14279 ccatrn 14294 ccatalpha 14298 swrdccat2 14382 swrdswrdlem 14417 swrdswrd 14418 swrdccatin1 14438 pfxccatin12lem3 14445 splfv2a 14469 repswswrd 14497 repswccat 14499 cshwcsh2id 14541 fsumnn0cl 15448 bcxmas 15547 nn0risefaccl 15732 eftlub 15818 4sqlem1 16649 psgnunilem2 19103 sylow1lem1 19203 nn0subm 20653 expmhm 20667 psrbagaddcl 21131 psrbagaddclOLD 21132 dvnadd 25093 ply1divex 25301 coemullem 25411 coemulhi 25415 plymul0or 25441 chtublem 26359 2sqlem7 26572 crctcshwlkn0lem4 28178 clwwlkccatlem 28353 fac2xp3 40160 factwoffsmonot 40163 mhphflem 40284 fmtnofac2lem 45020 nn0mnd 45373 ply1mulgsumlem1 45727 |
Copyright terms: Public domain | W3C validator |