MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0addcl Structured version   Visualization version   GIF version

Theorem nn0addcl 11780
Description: Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
nn0addcl ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)

Proof of Theorem nn0addcl
StepHypRef Expression
1 nnsscn 11491 . 2 ℕ ⊆ ℂ
2 id 22 . . 3 (ℕ ⊆ ℂ → ℕ ⊆ ℂ)
3 df-n0 11746 . . 3 0 = (ℕ ∪ {0})
4 nnaddcl 11508 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
54adantl 482 . . 3 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ)) → (𝑀 + 𝑁) ∈ ℕ)
62, 3, 5un0addcl 11778 . 2 ((ℕ ⊆ ℂ ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀 + 𝑁) ∈ ℕ0)
71, 6mpan 686 1 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀 + 𝑁) ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2081  wss 3859  (class class class)co 7016  cc 10381   + caddc 10386  cn 11486  0cn0 11745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-ov 7019  df-om 7437  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-ltxr 10526  df-nn 11487  df-n0 11746
This theorem is referenced by:  nn0addcli  11782  peano2nn0  11785  nn0addcld  11807  nn0readdcl  11809  xnn0xaddcl  12478  difelfznle  12871  elfzodifsumelfzo  12953  modsumfzodifsn  13162  expadd  13321  faclbnd4lem3  13505  faclbnd5  13508  faclbnd6  13509  facavg  13511  ccatlen  13773  ccatalpha  13791  swrdswrdlem  13902  swrdswrd  13903  swrdccatin1  13923  pfxccatin12lem3  13930  splfv2a  13954  repswswrd  13982  repswccat  13984  cshwcsh2id  14026  fsumnn0cl  14926  bcxmas  15023  nn0risefaccl  15209  eftlub  15295  4sqlem1  16113  psgnunilem2  18354  sylow1lem1  18453  psrbagaddcl  19838  nn0subm  20282  expmhm  20296  dvnadd  24209  ply1divex  24413  coemullem  24523  coemulhi  24527  plymul0or  24553  chtublem  25469  2sqlem7  25682  crctcshwlkn0lem4  27278  clwwlkccatlem  27454  fmtnofac2lem  43212  ply1mulgsumlem1  43920
  Copyright terms: Public domain W3C validator