Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0ex | Structured version Visualization version GIF version |
Description: The set of nonnegative integers exists. (Contributed by NM, 18-Jul-2004.) |
Ref | Expression |
---|---|
nn0ex | ⊢ ℕ0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 12217 | . 2 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | nnex 11962 | . . 3 ⊢ ℕ ∈ V | |
3 | snex 5357 | . . 3 ⊢ {0} ∈ V | |
4 | 2, 3 | unex 7587 | . 2 ⊢ (ℕ ∪ {0}) ∈ V |
5 | 1, 4 | eqeltri 2836 | 1 ⊢ ℕ0 ∈ V |
Copyright terms: Public domain | W3C validator |