![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrtrcl4 | Structured version Visualization version GIF version |
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
Ref | Expression |
---|---|
dfrtrcl4 | ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrtrcl3 39588 | . 2 ⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
2 | df-n0 11751 | . . . . . . 7 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 2 | equncomi 4056 | . . . . . 6 ⊢ ℕ0 = ({0} ∪ ℕ) |
4 | iuneq1 4844 | . . . . . 6 ⊢ (ℕ0 = ({0} ∪ ℕ) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) |
6 | iunxun 4919 | . . . . 5 ⊢ ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
7 | 5, 6 | eqtri 2819 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
8 | c0ex 10486 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | oveq2 7029 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
10 | 8, 9 | iunxsn 4916 | . . . . . 6 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) |
12 | oveq1 7028 | . . . . . . . 8 ⊢ (𝑥 = 𝑟 → (𝑥↑𝑟𝑛) = (𝑟↑𝑟𝑛)) | |
13 | 12 | iuneq2d 4857 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
14 | dftrcl3 39575 | . . . . . . 7 ⊢ t+ = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛)) | |
15 | nnex 11497 | . . . . . . . 8 ⊢ ℕ ∈ V | |
16 | ovex 7053 | . . . . . . . 8 ⊢ (𝑟↑𝑟𝑛) ∈ V | |
17 | 15, 16 | iunex 7530 | . . . . . . 7 ⊢ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) ∈ V |
18 | 13, 14, 17 | fvmpt 6640 | . . . . . 6 ⊢ (𝑟 ∈ V → (t+‘𝑟) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
19 | 18 | eqcomd 2801 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = (t+‘𝑟)) |
20 | 11, 19 | uneq12d 4065 | . . . 4 ⊢ (𝑟 ∈ V → (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
21 | 7, 20 | syl5eq 2843 | . . 3 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
22 | 21 | mpteq2ia 5056 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
23 | 1, 22 | eqtri 2819 | 1 ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ∈ wcel 2081 Vcvv 3437 ∪ cun 3861 {csn 4476 ∪ ciun 4829 ↦ cmpt 5045 ‘cfv 6230 (class class class)co 7021 0cc0 10388 ℕcn 11491 ℕ0cn0 11750 t+ctcl 14184 t*crtcl 14185 ↑𝑟crelexp 14218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5086 ax-sep 5099 ax-nul 5106 ax-pow 5162 ax-pr 5226 ax-un 7324 ax-cnex 10444 ax-resscn 10445 ax-1cn 10446 ax-icn 10447 ax-addcl 10448 ax-addrcl 10449 ax-mulcl 10450 ax-mulrcl 10451 ax-mulcom 10452 ax-addass 10453 ax-mulass 10454 ax-distr 10455 ax-i2m1 10456 ax-1ne0 10457 ax-1rid 10458 ax-rnegex 10459 ax-rrecex 10460 ax-cnre 10461 ax-pre-lttri 10462 ax-pre-lttrn 10463 ax-pre-ltadd 10464 ax-pre-mulgt0 10465 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3710 df-csb 3816 df-dif 3866 df-un 3868 df-in 3870 df-ss 3878 df-pss 3880 df-nul 4216 df-if 4386 df-pw 4459 df-sn 4477 df-pr 4479 df-tp 4481 df-op 4483 df-uni 4750 df-int 4787 df-iun 4831 df-br 4967 df-opab 5029 df-mpt 5046 df-tr 5069 df-id 5353 df-eprel 5358 df-po 5367 df-so 5368 df-fr 5407 df-we 5409 df-xp 5454 df-rel 5455 df-cnv 5456 df-co 5457 df-dm 5458 df-rn 5459 df-res 5460 df-ima 5461 df-pred 6028 df-ord 6074 df-on 6075 df-lim 6076 df-suc 6077 df-iota 6194 df-fun 6232 df-fn 6233 df-f 6234 df-f1 6235 df-fo 6236 df-f1o 6237 df-fv 6238 df-riota 6982 df-ov 7024 df-oprab 7025 df-mpo 7026 df-om 7442 df-2nd 7551 df-wrecs 7803 df-recs 7865 df-rdg 7903 df-er 8144 df-en 8363 df-dom 8364 df-sdom 8365 df-pnf 10528 df-mnf 10529 df-xr 10530 df-ltxr 10531 df-le 10532 df-sub 10724 df-neg 10725 df-nn 11492 df-2 11553 df-n0 11751 df-z 11835 df-uz 12099 df-seq 13225 df-trcl 14186 df-rtrcl 14187 df-relexp 14219 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |