Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrtrcl4 | Structured version Visualization version GIF version |
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
Ref | Expression |
---|---|
dfrtrcl4 | ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrtrcl3 41230 | . 2 ⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
2 | df-n0 12164 | . . . . . . 7 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 2 | equncomi 4085 | . . . . . 6 ⊢ ℕ0 = ({0} ∪ ℕ) |
4 | iuneq1 4937 | . . . . . 6 ⊢ (ℕ0 = ({0} ∪ ℕ) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) |
6 | iunxun 5019 | . . . . 5 ⊢ ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
8 | c0ex 10900 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | oveq2 7263 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
10 | 8, 9 | iunxsn 5016 | . . . . . 6 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) |
12 | oveq1 7262 | . . . . . . . 8 ⊢ (𝑥 = 𝑟 → (𝑥↑𝑟𝑛) = (𝑟↑𝑟𝑛)) | |
13 | 12 | iuneq2d 4950 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
14 | dftrcl3 41217 | . . . . . . 7 ⊢ t+ = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛)) | |
15 | nnex 11909 | . . . . . . . 8 ⊢ ℕ ∈ V | |
16 | ovex 7288 | . . . . . . . 8 ⊢ (𝑟↑𝑟𝑛) ∈ V | |
17 | 15, 16 | iunex 7784 | . . . . . . 7 ⊢ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) ∈ V |
18 | 13, 14, 17 | fvmpt 6857 | . . . . . 6 ⊢ (𝑟 ∈ V → (t+‘𝑟) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
19 | 18 | eqcomd 2744 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = (t+‘𝑟)) |
20 | 11, 19 | uneq12d 4094 | . . . 4 ⊢ (𝑟 ∈ V → (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
21 | 7, 20 | syl5eq 2791 | . . 3 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
22 | 21 | mpteq2ia 5173 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
23 | 1, 22 | eqtri 2766 | 1 ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 ∪ ciun 4921 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 t+ctcl 14624 t*crtcl 14625 ↑𝑟crelexp 14658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-trcl 14626 df-rtrcl 14627 df-relexp 14659 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |