| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrtrcl4 | Structured version Visualization version GIF version | ||
| Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
| Ref | Expression |
|---|---|
| dfrtrcl4 | ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrtrcl3 43757 | . 2 ⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
| 2 | df-n0 12502 | . . . . . . 7 ⊢ ℕ0 = (ℕ ∪ {0}) | |
| 3 | 2 | equncomi 4135 | . . . . . 6 ⊢ ℕ0 = ({0} ∪ ℕ) |
| 4 | iuneq1 4984 | . . . . . 6 ⊢ (ℕ0 = ({0} ∪ ℕ) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) |
| 6 | iunxun 5070 | . . . . 5 ⊢ ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
| 7 | 5, 6 | eqtri 2758 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 8 | c0ex 11229 | . . . . . . 7 ⊢ 0 ∈ V | |
| 9 | oveq2 7413 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
| 10 | 8, 9 | iunxsn 5067 | . . . . . 6 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
| 11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) |
| 12 | oveq1 7412 | . . . . . . . 8 ⊢ (𝑥 = 𝑟 → (𝑥↑𝑟𝑛) = (𝑟↑𝑟𝑛)) | |
| 13 | 12 | iuneq2d 4998 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 14 | dftrcl3 43744 | . . . . . . 7 ⊢ t+ = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛)) | |
| 15 | nnex 12246 | . . . . . . . 8 ⊢ ℕ ∈ V | |
| 16 | ovex 7438 | . . . . . . . 8 ⊢ (𝑟↑𝑟𝑛) ∈ V | |
| 17 | 15, 16 | iunex 7967 | . . . . . . 7 ⊢ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6986 | . . . . . 6 ⊢ (𝑟 ∈ V → (t+‘𝑟) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
| 19 | 18 | eqcomd 2741 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = (t+‘𝑟)) |
| 20 | 11, 19 | uneq12d 4144 | . . . 4 ⊢ (𝑟 ∈ V → (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
| 21 | 7, 20 | eqtrid 2782 | . . 3 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
| 22 | 21 | mpteq2ia 5216 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
| 23 | 1, 22 | eqtri 2758 | 1 ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3459 ∪ cun 3924 {csn 4601 ∪ ciun 4967 ↦ cmpt 5201 ‘cfv 6531 (class class class)co 7405 0cc0 11129 ℕcn 12240 ℕ0cn0 12501 t+ctcl 15004 t*crtcl 15005 ↑𝑟crelexp 15038 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-trcl 15006 df-rtrcl 15007 df-relexp 15039 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |