Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl4 Structured version   Visualization version   GIF version

Theorem dfrtrcl4 41719
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl4 t* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))

Proof of Theorem dfrtrcl4
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrtrcl3 41714 . 2 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
2 df-n0 12344 . . . . . . 7 0 = (ℕ ∪ {0})
32equncomi 4110 . . . . . 6 0 = ({0} ∪ ℕ)
4 iuneq1 4965 . . . . . 6 (ℕ0 = ({0} ∪ ℕ) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛))
53, 4ax-mp 5 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛)
6 iunxun 5049 . . . . 5 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
75, 6eqtri 2765 . . . 4 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
8 c0ex 11079 . . . . . . 7 0 ∈ V
9 oveq2 7354 . . . . . . 7 (𝑛 = 0 → (𝑟𝑟𝑛) = (𝑟𝑟0))
108, 9iunxsn 5046 . . . . . 6 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0)
1110a1i 11 . . . . 5 (𝑟 ∈ V → 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0))
12 oveq1 7353 . . . . . . . 8 (𝑥 = 𝑟 → (𝑥𝑟𝑛) = (𝑟𝑟𝑛))
1312iuneq2d 4978 . . . . . . 7 (𝑥 = 𝑟 𝑛 ∈ ℕ (𝑥𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
14 dftrcl3 41701 . . . . . . 7 t+ = (𝑥 ∈ V ↦ 𝑛 ∈ ℕ (𝑥𝑟𝑛))
15 nnex 12089 . . . . . . . 8 ℕ ∈ V
16 ovex 7379 . . . . . . . 8 (𝑟𝑟𝑛) ∈ V
1715, 16iunex 7888 . . . . . . 7 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
1813, 14, 17fvmpt 6940 . . . . . 6 (𝑟 ∈ V → (t+‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
1918eqcomd 2743 . . . . 5 (𝑟 ∈ V → 𝑛 ∈ ℕ (𝑟𝑟𝑛) = (t+‘𝑟))
2011, 19uneq12d 4119 . . . 4 (𝑟 ∈ V → ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛)) = ((𝑟𝑟0) ∪ (t+‘𝑟)))
217, 20eqtrid 2789 . . 3 (𝑟 ∈ V → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = ((𝑟𝑟0) ∪ (t+‘𝑟)))
2221mpteq2ia 5203 . 2 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))
231, 22eqtri 2765 1 t* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2106  Vcvv 3443  cun 3903  {csn 4581   ciun 4949  cmpt 5183  cfv 6488  (class class class)co 7346  0cc0 10981  cn 12083  0cn0 12343  t+ctcl 14800  t*crtcl 14801  𝑟crelexp 14834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5237  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659  ax-cnex 11037  ax-resscn 11038  ax-1cn 11039  ax-icn 11040  ax-addcl 11041  ax-addrcl 11042  ax-mulcl 11043  ax-mulrcl 11044  ax-mulcom 11045  ax-addass 11046  ax-mulass 11047  ax-distr 11048  ax-i2m1 11049  ax-1ne0 11050  ax-1rid 11051  ax-rnegex 11052  ax-rrecex 11053  ax-cnre 11054  ax-pre-lttri 11055  ax-pre-lttrn 11056  ax-pre-ltadd 11057  ax-pre-mulgt0 11058
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3924  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-int 4903  df-iun 4951  df-br 5101  df-opab 5163  df-mpt 5184  df-tr 5218  df-id 5525  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5582  df-we 5584  df-xp 5633  df-rel 5634  df-cnv 5635  df-co 5636  df-dm 5637  df-rn 5638  df-res 5639  df-ima 5640  df-pred 6246  df-ord 6313  df-on 6314  df-lim 6315  df-suc 6316  df-iota 6440  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7302  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7790  df-2nd 7909  df-frecs 8176  df-wrecs 8207  df-recs 8281  df-rdg 8320  df-er 8578  df-en 8814  df-dom 8815  df-sdom 8816  df-pnf 11121  df-mnf 11122  df-xr 11123  df-ltxr 11124  df-le 11125  df-sub 11317  df-neg 11318  df-nn 12084  df-2 12146  df-n0 12344  df-z 12430  df-uz 12693  df-seq 13832  df-trcl 14802  df-rtrcl 14803  df-relexp 14835
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator