![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfrtrcl4 | Structured version Visualization version GIF version |
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
Ref | Expression |
---|---|
dfrtrcl4 | ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrtrcl3 42787 | . 2 ⊢ t* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) | |
2 | df-n0 12478 | . . . . . . 7 ⊢ ℕ0 = (ℕ ∪ {0}) | |
3 | 2 | equncomi 4155 | . . . . . 6 ⊢ ℕ0 = ({0} ∪ ℕ) |
4 | iuneq1 5013 | . . . . . 6 ⊢ (ℕ0 = ({0} ∪ ℕ) → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛)) | |
5 | 3, 4 | ax-mp 5 | . . . . 5 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) |
6 | iunxun 5097 | . . . . 5 ⊢ ∪ 𝑛 ∈ ({0} ∪ ℕ)(𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) | |
7 | 5, 6 | eqtri 2759 | . . . 4 ⊢ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
8 | c0ex 11213 | . . . . . . 7 ⊢ 0 ∈ V | |
9 | oveq2 7420 | . . . . . . 7 ⊢ (𝑛 = 0 → (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) | |
10 | 8, 9 | iunxsn 5094 | . . . . . 6 ⊢ ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0) |
11 | 10 | a1i 11 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) = (𝑟↑𝑟0)) |
12 | oveq1 7419 | . . . . . . . 8 ⊢ (𝑥 = 𝑟 → (𝑥↑𝑟𝑛) = (𝑟↑𝑟𝑛)) | |
13 | 12 | iuneq2d 5026 | . . . . . . 7 ⊢ (𝑥 = 𝑟 → ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
14 | dftrcl3 42774 | . . . . . . 7 ⊢ t+ = (𝑥 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑥↑𝑟𝑛)) | |
15 | nnex 12223 | . . . . . . . 8 ⊢ ℕ ∈ V | |
16 | ovex 7445 | . . . . . . . 8 ⊢ (𝑟↑𝑟𝑛) ∈ V | |
17 | 15, 16 | iunex 7959 | . . . . . . 7 ⊢ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) ∈ V |
18 | 13, 14, 17 | fvmpt 6998 | . . . . . 6 ⊢ (𝑟 ∈ V → (t+‘𝑟) = ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) |
19 | 18 | eqcomd 2737 | . . . . 5 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛) = (t+‘𝑟)) |
20 | 11, 19 | uneq12d 4164 | . . . 4 ⊢ (𝑟 ∈ V → (∪ 𝑛 ∈ {0} (𝑟↑𝑟𝑛) ∪ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
21 | 7, 20 | eqtrid 2783 | . . 3 ⊢ (𝑟 ∈ V → ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛) = ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
22 | 21 | mpteq2ia 5251 | . 2 ⊢ (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
23 | 1, 22 | eqtri 2759 | 1 ⊢ t* = (𝑟 ∈ V ↦ ((𝑟↑𝑟0) ∪ (t+‘𝑟))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 {csn 4628 ∪ ciun 4997 ↦ cmpt 5231 ‘cfv 6543 (class class class)co 7412 0cc0 11114 ℕcn 12217 ℕ0cn0 12477 t+ctcl 14937 t*crtcl 14938 ↑𝑟crelexp 14971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-seq 13972 df-trcl 14939 df-rtrcl 14940 df-relexp 14972 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |