Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrtrcl4 Structured version   Visualization version   GIF version

Theorem dfrtrcl4 39593
Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.)
Assertion
Ref Expression
dfrtrcl4 t* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))

Proof of Theorem dfrtrcl4
Dummy variables 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrtrcl3 39588 . 2 t* = (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛))
2 df-n0 11751 . . . . . . 7 0 = (ℕ ∪ {0})
32equncomi 4056 . . . . . 6 0 = ({0} ∪ ℕ)
4 iuneq1 4844 . . . . . 6 (ℕ0 = ({0} ∪ ℕ) → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛))
53, 4ax-mp 5 . . . . 5 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛)
6 iunxun 4919 . . . . 5 𝑛 ∈ ({0} ∪ ℕ)(𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
75, 6eqtri 2819 . . . 4 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛))
8 c0ex 10486 . . . . . . 7 0 ∈ V
9 oveq2 7029 . . . . . . 7 (𝑛 = 0 → (𝑟𝑟𝑛) = (𝑟𝑟0))
108, 9iunxsn 4916 . . . . . 6 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0)
1110a1i 11 . . . . 5 (𝑟 ∈ V → 𝑛 ∈ {0} (𝑟𝑟𝑛) = (𝑟𝑟0))
12 oveq1 7028 . . . . . . . 8 (𝑥 = 𝑟 → (𝑥𝑟𝑛) = (𝑟𝑟𝑛))
1312iuneq2d 4857 . . . . . . 7 (𝑥 = 𝑟 𝑛 ∈ ℕ (𝑥𝑟𝑛) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
14 dftrcl3 39575 . . . . . . 7 t+ = (𝑥 ∈ V ↦ 𝑛 ∈ ℕ (𝑥𝑟𝑛))
15 nnex 11497 . . . . . . . 8 ℕ ∈ V
16 ovex 7053 . . . . . . . 8 (𝑟𝑟𝑛) ∈ V
1715, 16iunex 7530 . . . . . . 7 𝑛 ∈ ℕ (𝑟𝑟𝑛) ∈ V
1813, 14, 17fvmpt 6640 . . . . . 6 (𝑟 ∈ V → (t+‘𝑟) = 𝑛 ∈ ℕ (𝑟𝑟𝑛))
1918eqcomd 2801 . . . . 5 (𝑟 ∈ V → 𝑛 ∈ ℕ (𝑟𝑟𝑛) = (t+‘𝑟))
2011, 19uneq12d 4065 . . . 4 (𝑟 ∈ V → ( 𝑛 ∈ {0} (𝑟𝑟𝑛) ∪ 𝑛 ∈ ℕ (𝑟𝑟𝑛)) = ((𝑟𝑟0) ∪ (t+‘𝑟)))
217, 20syl5eq 2843 . . 3 (𝑟 ∈ V → 𝑛 ∈ ℕ0 (𝑟𝑟𝑛) = ((𝑟𝑟0) ∪ (t+‘𝑟)))
2221mpteq2ia 5056 . 2 (𝑟 ∈ V ↦ 𝑛 ∈ ℕ0 (𝑟𝑟𝑛)) = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))
231, 22eqtri 2819 1 t* = (𝑟 ∈ V ↦ ((𝑟𝑟0) ∪ (t+‘𝑟)))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1522  wcel 2081  Vcvv 3437  cun 3861  {csn 4476   ciun 4829  cmpt 5045  cfv 6230  (class class class)co 7021  0cc0 10388  cn 11491  0cn0 11750  t+ctcl 14184  t*crtcl 14185  𝑟crelexp 14218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-mulcom 10452  ax-addass 10453  ax-mulass 10454  ax-distr 10455  ax-i2m1 10456  ax-1ne0 10457  ax-1rid 10458  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461  ax-pre-lttri 10462  ax-pre-lttrn 10463  ax-pre-ltadd 10464  ax-pre-mulgt0 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-int 4787  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-riota 6982  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-er 8144  df-en 8363  df-dom 8364  df-sdom 8365  df-pnf 10528  df-mnf 10529  df-xr 10530  df-ltxr 10531  df-le 10532  df-sub 10724  df-neg 10725  df-nn 11492  df-2 11553  df-n0 11751  df-z 11835  df-uz 12099  df-seq 13225  df-trcl 14186  df-rtrcl 14187  df-relexp 14219
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator