![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnn0 | Structured version Visualization version GIF version |
Description: Nonnegative integers expressed in terms of naturals and zero. (Contributed by Raph Levien, 10-Dec-2002.) |
Ref | Expression |
---|---|
elnn0 | ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-n0 11618 | . . 3 ⊢ ℕ0 = (ℕ ∪ {0}) | |
2 | 1 | eleq2i 2897 | . 2 ⊢ (𝐴 ∈ ℕ0 ↔ 𝐴 ∈ (ℕ ∪ {0})) |
3 | elun 3979 | . 2 ⊢ (𝐴 ∈ (ℕ ∪ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 ∈ {0})) | |
4 | c0ex 10349 | . . . 4 ⊢ 0 ∈ V | |
5 | 4 | elsn2 4431 | . . 3 ⊢ (𝐴 ∈ {0} ↔ 𝐴 = 0) |
6 | 5 | orbi2i 943 | . 2 ⊢ ((𝐴 ∈ ℕ ∨ 𝐴 ∈ {0}) ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
7 | 2, 3, 6 | 3bitri 289 | 1 ⊢ (𝐴 ∈ ℕ0 ↔ (𝐴 ∈ ℕ ∨ 𝐴 = 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 ∨ wo 880 = wceq 1658 ∈ wcel 2166 ∪ cun 3795 {csn 4396 0cc0 10251 ℕcn 11349 ℕ0cn0 11617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-mulcl 10313 ax-i2m1 10319 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-v 3415 df-un 3802 df-sn 4397 df-n0 11618 |
This theorem is referenced by: 0nn0 11634 nn0ge0 11644 nnnn0addcl 11649 nnm1nn0 11660 elnnnn0b 11663 nn0sub 11669 elnn0z 11716 elznn0nn 11717 elznn0 11718 elznn 11719 nn0lt10b 11766 nn0ind-raph 11804 nn0ledivnn 12226 expp1 13160 expneg 13161 expcllem 13164 facp1 13357 faclbnd 13369 faclbnd3 13371 faclbnd4lem1 13372 faclbnd4lem3 13374 faclbnd4 13376 bcn1 13392 bcval5 13397 hashv01gt1 13424 hashnncl 13446 seqcoll2 13537 relexpsucr 14145 relexpsucl 14149 relexpcnv 14151 relexprelg 14154 relexpdmg 14158 relexprng 14162 relexpfld 14165 relexpaddg 14169 fz1f1o 14817 arisum 14965 arisum2 14966 geomulcvg 14980 fprodfac 15075 ef0lem 15180 nn0enne 15467 nn0o1gt2 15470 bezoutlem3 15630 dfgcd2 15635 mulgcd 15637 eucalgf 15668 eucalginv 15669 eucalglt 15670 prmdvdsexpr 15799 rpexp1i 15803 nn0gcdsq 15830 odzdvds 15870 pceq0 15945 fldivp1 15971 pockthg 15980 1arith 16001 4sqlem17 16035 4sqlem19 16037 vdwmc2 16053 vdwlem13 16067 0ram 16094 ram0 16096 ramz 16099 ramcl 16103 mulgnn0p1 17905 mulgnn0subcl 17907 mulgneg 17912 mulgnn0z 17919 mulgnn0dir 17922 mulgnn0ass 17928 submmulg 17936 odcl 18305 mndodcongi 18312 oddvdsnn0 18313 odnncl 18314 oddvds 18316 dfod2 18331 odcl2 18332 gexcl 18345 gexdvds 18349 gexnnod 18353 sylow1lem1 18363 mulgnn0di 18583 torsubg 18609 ablfac1eu 18825 evlslem3 19873 gzrngunitlem 20170 zringlpirlem3 20193 prmirredlem 20200 prmirred 20202 znf1o 20258 dscmet 22746 dvexp2 24115 tdeglem4 24218 dgrnznn 24401 coefv0 24402 dgreq0 24419 dgrcolem2 24428 dvply1 24437 aaliou2 24493 radcnv0 24568 logfac 24745 logtayl 24804 cxpexp 24812 leibpilem1 25079 birthdaylem2 25091 harmonicbnd3 25146 sqf11 25277 ppiltx 25315 sqff1o 25320 lgsdir 25469 lgsabs1 25473 lgseisenlem1 25512 2sqlem7 25561 2sqblem 25568 chebbnd1lem1 25570 znsqcld 30058 xrsmulgzz 30222 ressmulgnn0 30228 nexple 30615 eulerpartlemsv2 30964 eulerpartlemv 30970 eulerpartlemb 30974 eulerpartlemf 30976 eulerpartlemgvv 30982 eulerpartlemgh 30984 fz0n 32157 bccolsum 32166 nn0prpw 32855 negn0nposznnd 38056 fzsplit1nn0 38160 pell1qrgaplem 38280 monotoddzzfi 38349 jm2.22 38404 jm2.23 38405 rmydioph 38423 expdioph 38432 rp-isfinite6 38704 relexpss1d 38837 relexpmulg 38842 iunrelexpmin2 38844 relexp0a 38848 relexpxpmin 38849 relexpaddss 38850 wallispilem3 41077 etransclem24 41268 pwdif 42330 lighneallem3 42353 lighneallem4 42356 nn0o1gt2ALTV 42434 nn0oALTV 42436 ztprmneprm 42971 blennn0elnn 43217 blen1b 43228 nn0sumshdiglem1 43261 |
Copyright terms: Public domain | W3C validator |