MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2lem Structured version   Visualization version   GIF version

Theorem m2cpminvid2lem 22643
Description: Lemma for m2cpminvid2 22644. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2lem.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2lem.p 𝑃 = (Poly1β€˜π‘…)
Assertion
Ref Expression
m2cpminvid2lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ βˆ€π‘› ∈ β„•0 ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   π‘₯,𝑛   𝑦,𝑛
Allowed substitution hints:   𝑃(π‘₯,𝑦)   𝑅(π‘₯,𝑦)   𝑆(π‘₯,𝑦)   𝑀(π‘₯,𝑦)   𝑁(π‘₯,𝑦)

Proof of Theorem m2cpminvid2lem
Dummy variables 𝑖 𝑗 π‘˜ 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2lem.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpminvid2lem.p . . . . . . . 8 𝑃 = (Poly1β€˜π‘…)
3 eqid 2727 . . . . . . . 8 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
4 eqid 2727 . . . . . . . 8 (Baseβ€˜(𝑁 Mat 𝑃)) = (Baseβ€˜(𝑁 Mat 𝑃))
51, 2, 3, 4cpmatelimp 22601 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) β†’ (𝑀 ∈ 𝑆 β†’ (𝑀 ∈ (Baseβ€˜(𝑁 Mat 𝑃)) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…))))
653impia 1115 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) β†’ (𝑀 ∈ (Baseβ€˜(𝑁 Mat 𝑃)) ∧ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…)))
76simprd 495 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) β†’ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…))
87adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…))
9 fvoveq1 7437 . . . . . . . . . 10 (𝑖 = π‘₯ β†’ (coe1β€˜(𝑖𝑀𝑗)) = (coe1β€˜(π‘₯𝑀𝑗)))
109fveq1d 6893 . . . . . . . . 9 (𝑖 = π‘₯ β†’ ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = ((coe1β€˜(π‘₯𝑀𝑗))β€˜π‘˜))
1110eqeq1d 2729 . . . . . . . 8 (𝑖 = π‘₯ β†’ (((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) ↔ ((coe1β€˜(π‘₯𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…)))
1211ralbidv 3172 . . . . . . 7 (𝑖 = π‘₯ β†’ (βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) ↔ βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…)))
13 oveq2 7422 . . . . . . . . . . 11 (𝑗 = 𝑦 β†’ (π‘₯𝑀𝑗) = (π‘₯𝑀𝑦))
1413fveq2d 6895 . . . . . . . . . 10 (𝑗 = 𝑦 β†’ (coe1β€˜(π‘₯𝑀𝑗)) = (coe1β€˜(π‘₯𝑀𝑦)))
1514fveq1d 6893 . . . . . . . . 9 (𝑗 = 𝑦 β†’ ((coe1β€˜(π‘₯𝑀𝑗))β€˜π‘˜) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜))
1615eqeq1d 2729 . . . . . . . 8 (𝑗 = 𝑦 β†’ (((coe1β€˜(π‘₯𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) ↔ ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…)))
1716ralbidv 3172 . . . . . . 7 (𝑗 = 𝑦 β†’ (βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) ↔ βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…)))
1812, 17rspc2v 3618 . . . . . 6 ((π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁) β†’ (βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) β†’ βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…)))
1918adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) β†’ βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…)))
20 fveqeq2 6900 . . . . . . 7 (π‘˜ = 𝑛 β†’ (((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…) ↔ ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…)))
2120cbvralvw 3229 . . . . . 6 (βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…) ↔ βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…))
22 simpl2 1190 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ 𝑅 ∈ Ring)
23 eqid 2727 . . . . . . . . . . . . . . . . . . 19 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
24 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ π‘₯ ∈ 𝑁)
25 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ 𝑦 ∈ 𝑁)
261, 2, 3, 4cpmatpmat 22599 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) β†’ 𝑀 ∈ (Baseβ€˜(𝑁 Mat 𝑃)))
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ 𝑀 ∈ (Baseβ€˜(𝑁 Mat 𝑃)))
283, 23, 4, 24, 25, 27matecld 22315 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (π‘₯𝑀𝑦) ∈ (Baseβ€˜π‘ƒ))
29 0nn0 12509 . . . . . . . . . . . . . . . . . 18 0 ∈ β„•0
30 eqid 2727 . . . . . . . . . . . . . . . . . . 19 (coe1β€˜(π‘₯𝑀𝑦)) = (coe1β€˜(π‘₯𝑀𝑦))
31 eqid 2727 . . . . . . . . . . . . . . . . . . 19 (Baseβ€˜π‘…) = (Baseβ€˜π‘…)
3230, 23, 2, 31coe1fvalcl 22118 . . . . . . . . . . . . . . . . . 18 (((π‘₯𝑀𝑦) ∈ (Baseβ€˜π‘ƒ) ∧ 0 ∈ β„•0) β†’ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…))
3328, 29, 32sylancl 585 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…))
3422, 33jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (𝑅 ∈ Ring ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…)))
3534adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ (𝑅 ∈ Ring ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…)))
36 eqid 2727 . . . . . . . . . . . . . . . 16 (algScβ€˜π‘ƒ) = (algScβ€˜π‘ƒ)
37 eqid 2727 . . . . . . . . . . . . . . . 16 (0gβ€˜π‘…) = (0gβ€˜π‘…)
382, 36, 31, 37coe1scl 22193 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…)) β†’ (coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…))))
3935, 38syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ (coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…))))
4039fveq1d 6893 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((𝑙 ∈ β„•0 ↦ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)))β€˜π‘›))
41 eqidd 2728 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ (𝑙 ∈ β„•0 ↦ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…))) = (𝑙 ∈ β„•0 ↦ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…))))
42 eqeq1 2731 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 β†’ (𝑙 = 0 ↔ 𝑛 = 0))
4342ifbid 4547 . . . . . . . . . . . . . . 15 (𝑙 = 𝑛 β†’ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)) = if(𝑛 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)))
4443adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) ∧ 𝑙 = 𝑛) β†’ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)) = if(𝑛 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)))
45 nnnn0 12501 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„• β†’ 𝑛 ∈ β„•0)
4645adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ 𝑛 ∈ β„•0)
47 fvex 6904 . . . . . . . . . . . . . . . 16 ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ V
48 fvex 6904 . . . . . . . . . . . . . . . 16 (0gβ€˜π‘…) ∈ V
4947, 48ifex 4574 . . . . . . . . . . . . . . 15 if(𝑛 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)) ∈ V
5049a1i 11 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ if(𝑛 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)) ∈ V)
5141, 44, 46, 50fvmptd 7006 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ ((𝑙 ∈ β„•0 ↦ if(𝑙 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)))β€˜π‘›) = if(𝑛 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)))
52 nnne0 12268 . . . . . . . . . . . . . . . 16 (𝑛 ∈ β„• β†’ 𝑛 β‰  0)
5352neneqd 2940 . . . . . . . . . . . . . . 15 (𝑛 ∈ β„• β†’ Β¬ 𝑛 = 0)
5453adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ Β¬ 𝑛 = 0)
5554iffalsed 4535 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ if(𝑛 = 0, ((coe1β€˜(π‘₯𝑀𝑦))β€˜0), (0gβ€˜π‘…)) = (0gβ€˜π‘…))
5640, 51, 553eqtrd 2771 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = (0gβ€˜π‘…))
57 eqcom 2734 . . . . . . . . . . . . 13 (((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…) ↔ (0gβ€˜π‘…) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
5857biimpi 215 . . . . . . . . . . . 12 (((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…) β†’ (0gβ€˜π‘…) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
5956, 58sylan9eq 2787 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
6059ex 412 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ 𝑛 ∈ β„•) β†’ (((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…) β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›)))
6160ralimdva 3162 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…) β†’ βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›)))
6261imp 406 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…)) β†’ βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
6334adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (𝑅 ∈ Ring ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…)))
642, 36, 31ply1sclid 22194 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…)) β†’ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) = ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0))
6564eqcomd 2733 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1β€˜(π‘₯𝑀𝑦))β€˜0) ∈ (Baseβ€˜π‘…)) β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))
6663, 65syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…)) β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))
6762, 66jca 511 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) ∧ βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…)) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))
6867ex 412 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = (0gβ€˜π‘…) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))))
6921, 68biimtrid 241 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘˜ ∈ β„• ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘˜) = (0gβ€˜π‘…) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))))
7019, 69syld 47 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘– ∈ 𝑁 βˆ€π‘— ∈ 𝑁 βˆ€π‘˜ ∈ β„• ((coe1β€˜(𝑖𝑀𝑗))β€˜π‘˜) = (0gβ€˜π‘…) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))))
718, 70mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))
72 c0ex 11230 . . . 4 0 ∈ V
73 fveq2 6891 . . . . . 6 (𝑛 = 0 β†’ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0))
74 fveq2 6891 . . . . . 6 (𝑛 = 0 β†’ ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))
7573, 74eqeq12d 2743 . . . . 5 (𝑛 = 0 β†’ (((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ↔ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))
7675ralunsn 4890 . . . 4 (0 ∈ V β†’ (βˆ€π‘› ∈ (β„• βˆͺ {0})((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ↔ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))))
7772, 76mp1i 13 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ (βˆ€π‘› ∈ (β„• βˆͺ {0})((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ↔ (βˆ€π‘› ∈ β„• ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ∧ ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜0) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜0))))
7871, 77mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ βˆ€π‘› ∈ (β„• βˆͺ {0})((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
79 df-n0 12495 . . 3 β„•0 = (β„• βˆͺ {0})
8079raleqi 3318 . 2 (βˆ€π‘› ∈ β„•0 ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›) ↔ βˆ€π‘› ∈ (β„• βˆͺ {0})((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
8178, 80sylibr 233 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝑆) ∧ (π‘₯ ∈ 𝑁 ∧ 𝑦 ∈ 𝑁)) β†’ βˆ€π‘› ∈ β„•0 ((coe1β€˜((algScβ€˜π‘ƒ)β€˜((coe1β€˜(π‘₯𝑀𝑦))β€˜0)))β€˜π‘›) = ((coe1β€˜(π‘₯𝑀𝑦))β€˜π‘›))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  Vcvv 3469   βˆͺ cun 3942  ifcif 4524  {csn 4624   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414  Fincfn 8955  0cc0 11130  β„•cn 12234  β„•0cn0 12494  Basecbs 17171  0gc0g 17412  Ringcrg 20164  algSccascl 21773  Poly1cpl1 22083  coe1cco1 22084   Mat cmat 22294   ConstPolyMat ccpmat 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-coe1 22089  df-mat 22295  df-cpmat 22595
This theorem is referenced by:  m2cpminvid2  22644
  Copyright terms: Public domain W3C validator