Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2lem Structured version   Visualization version   GIF version

Theorem m2cpminvid2lem 21400
 Description: Lemma for m2cpminvid2 21401. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2lem.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2lem.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
m2cpminvid2lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝑥,𝑛   𝑦,𝑛
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem m2cpminvid2lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2lem.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpminvid2lem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
3 eqid 2798 . . . . . . . 8 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
4 eqid 2798 . . . . . . . 8 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
51, 2, 3, 4cpmatelimp 21358 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
653impia 1114 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
76simprd 499 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
87adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
9 fvoveq1 7168 . . . . . . . . . 10 (𝑖 = 𝑥 → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑗)))
109fveq1d 6657 . . . . . . . . 9 (𝑖 = 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑗))‘𝑘))
1110eqeq1d 2800 . . . . . . . 8 (𝑖 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
1211ralbidv 3162 . . . . . . 7 (𝑖 = 𝑥 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
13 oveq2 7153 . . . . . . . . . . 11 (𝑗 = 𝑦 → (𝑥𝑀𝑗) = (𝑥𝑀𝑦))
1413fveq2d 6659 . . . . . . . . . 10 (𝑗 = 𝑦 → (coe1‘(𝑥𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
1514fveq1d 6657 . . . . . . . . 9 (𝑗 = 𝑦 → ((coe1‘(𝑥𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑦))‘𝑘))
1615eqeq1d 2800 . . . . . . . 8 (𝑗 = 𝑦 → (((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1716ralbidv 3162 . . . . . . 7 (𝑗 = 𝑦 → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1812, 17rspc2v 3582 . . . . . 6 ((𝑥𝑁𝑦𝑁) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1918adantl 485 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
20 fveqeq2 6664 . . . . . . 7 (𝑘 = 𝑛 → (((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)))
2120cbvralvw 3397 . . . . . 6 (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅))
22 simpl2 1189 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
23 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
24 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
25 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
261, 2, 3, 4cpmatpmat 21356 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
2726adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
283, 23, 4, 24, 25, 27matecld 21072 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘𝑃))
29 0nn0 11918 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
30 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
31 eqid 2798 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
3230, 23, 2, 31coe1fvalcl 20882 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑀𝑦) ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3328, 29, 32sylancl 589 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3422, 33jca 515 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
3534adantr 484 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
36 eqid 2798 . . . . . . . . . . . . . . . 16 (algSc‘𝑃) = (algSc‘𝑃)
37 eqid 2798 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
382, 36, 31, 37coe1scl 20957 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
3935, 38syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
4039fveq1d 6657 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛))
41 eqidd 2799 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
42 eqeq1 2802 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
4342ifbid 4450 . . . . . . . . . . . . . . 15 (𝑙 = 𝑛 → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
4443adantl 485 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
45 nnnn0 11910 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4645adantl 485 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 fvex 6668 . . . . . . . . . . . . . . . 16 ((coe1‘(𝑥𝑀𝑦))‘0) ∈ V
48 fvex 6668 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
4947, 48ifex 4476 . . . . . . . . . . . . . . 15 if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V
5049a1i 11 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V)
5141, 44, 46, 50fvmptd 6762 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
52 nnne0 11677 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5352neneqd 2992 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
5453adantl 485 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
5554iffalsed 4439 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = (0g𝑅))
5640, 51, 553eqtrd 2837 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = (0g𝑅))
57 eqcom 2805 . . . . . . . . . . . . 13 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) ↔ (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
5857biimpi 219 . . . . . . . . . . . 12 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
5956, 58sylan9eq 2853 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6059ex 416 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6160ralimdva 3144 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6261imp 410 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6334adantr 484 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
642, 36, 31ply1sclid 20958 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
6564eqcomd 2804 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6663, 65syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6762, 66jca 515 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
6867ex 416 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
6921, 68syl5bi 245 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7019, 69syld 47 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
718, 70mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
72 c0ex 10642 . . . 4 0 ∈ V
73 fveq2 6655 . . . . . 6 (𝑛 = 0 → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
74 fveq2 6655 . . . . . 6 (𝑛 = 0 → ((coe1‘(𝑥𝑀𝑦))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘0))
7573, 74eqeq12d 2814 . . . . 5 (𝑛 = 0 → (((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
7675ralunsn 4790 . . . 4 (0 ∈ V → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7772, 76mp1i 13 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7871, 77mpbird 260 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
79 df-n0 11904 . . 3 0 = (ℕ ∪ {0})
8079raleqi 3363 . 2 (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
8178, 80sylibr 237 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  Vcvv 3442   ∪ cun 3881  ifcif 4428  {csn 4528   ↦ cmpt 5114  ‘cfv 6332  (class class class)co 7145  Fincfn 8510  0cc0 10544  ℕcn 11643  ℕ0cn0 11903  Basecbs 16495  0gc0g 16725  Ringcrg 19311  algSccascl 20563  Poly1cpl1 20847  coe1cco1 20848   Mat cmat 21053   ConstPolyMat ccpmat 21349 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-ot 4537  df-uni 4805  df-int 4843  df-iun 4887  df-iin 4888  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7400  df-ofr 7401  df-om 7574  df-1st 7684  df-2nd 7685  df-supp 7827  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-2o 8104  df-oadd 8107  df-er 8290  df-map 8409  df-pm 8410  df-ixp 8463  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-fsupp 8836  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-nn 11644  df-2 11706  df-3 11707  df-4 11708  df-5 11709  df-6 11710  df-7 11711  df-8 11712  df-9 11713  df-n0 11904  df-z 11990  df-dec 12107  df-uz 12252  df-fz 12906  df-fzo 13049  df-seq 13385  df-hash 13707  df-struct 16497  df-ndx 16498  df-slot 16499  df-base 16501  df-sets 16502  df-ress 16503  df-plusg 16590  df-mulr 16591  df-sca 16593  df-vsca 16594  df-ip 16595  df-tset 16596  df-ple 16597  df-ds 16599  df-hom 16601  df-cco 16602  df-0g 16727  df-gsum 16728  df-prds 16733  df-pws 16735  df-mre 16869  df-mrc 16870  df-acs 16872  df-mgm 17864  df-sgrp 17913  df-mnd 17924  df-mhm 17968  df-submnd 17969  df-grp 18118  df-minusg 18119  df-sbg 18120  df-mulg 18238  df-subg 18289  df-ghm 18369  df-cntz 18460  df-cmn 18921  df-abl 18922  df-mgp 19254  df-ur 19266  df-ring 19313  df-subrg 19547  df-lmod 19650  df-lss 19718  df-sra 19958  df-rgmod 19959  df-dsmm 20443  df-frlm 20458  df-ascl 20566  df-psr 20617  df-mvr 20618  df-mpl 20619  df-opsr 20621  df-psr1 20850  df-vr1 20851  df-ply1 20852  df-coe1 20853  df-mat 21054  df-cpmat 21352 This theorem is referenced by:  m2cpminvid2  21401
 Copyright terms: Public domain W3C validator