MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2lem Structured version   Visualization version   GIF version

Theorem m2cpminvid2lem 22692
Description: Lemma for m2cpminvid2 22693. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2lem.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2lem.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
m2cpminvid2lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝑥,𝑛   𝑦,𝑛
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem m2cpminvid2lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2lem.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpminvid2lem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
3 eqid 2735 . . . . . . . 8 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
4 eqid 2735 . . . . . . . 8 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
51, 2, 3, 4cpmatelimp 22650 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
653impia 1117 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
76simprd 495 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
87adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
9 fvoveq1 7428 . . . . . . . . . 10 (𝑖 = 𝑥 → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑗)))
109fveq1d 6878 . . . . . . . . 9 (𝑖 = 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑗))‘𝑘))
1110eqeq1d 2737 . . . . . . . 8 (𝑖 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
1211ralbidv 3163 . . . . . . 7 (𝑖 = 𝑥 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
13 oveq2 7413 . . . . . . . . . . 11 (𝑗 = 𝑦 → (𝑥𝑀𝑗) = (𝑥𝑀𝑦))
1413fveq2d 6880 . . . . . . . . . 10 (𝑗 = 𝑦 → (coe1‘(𝑥𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
1514fveq1d 6878 . . . . . . . . 9 (𝑗 = 𝑦 → ((coe1‘(𝑥𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑦))‘𝑘))
1615eqeq1d 2737 . . . . . . . 8 (𝑗 = 𝑦 → (((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1716ralbidv 3163 . . . . . . 7 (𝑗 = 𝑦 → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1812, 17rspc2v 3612 . . . . . 6 ((𝑥𝑁𝑦𝑁) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1918adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
20 fveqeq2 6885 . . . . . . 7 (𝑘 = 𝑛 → (((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)))
2120cbvralvw 3220 . . . . . 6 (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅))
22 simpl2 1193 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
23 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
24 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
25 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
261, 2, 3, 4cpmatpmat 22648 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
283, 23, 4, 24, 25, 27matecld 22364 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘𝑃))
29 0nn0 12516 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
30 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
31 eqid 2735 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
3230, 23, 2, 31coe1fvalcl 22148 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑀𝑦) ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3328, 29, 32sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3422, 33jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
3534adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
36 eqid 2735 . . . . . . . . . . . . . . . 16 (algSc‘𝑃) = (algSc‘𝑃)
37 eqid 2735 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
382, 36, 31, 37coe1scl 22224 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
3935, 38syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
4039fveq1d 6878 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛))
41 eqidd 2736 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
42 eqeq1 2739 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
4342ifbid 4524 . . . . . . . . . . . . . . 15 (𝑙 = 𝑛 → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
4443adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
45 nnnn0 12508 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 fvex 6889 . . . . . . . . . . . . . . . 16 ((coe1‘(𝑥𝑀𝑦))‘0) ∈ V
48 fvex 6889 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
4947, 48ifex 4551 . . . . . . . . . . . . . . 15 if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V
5049a1i 11 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V)
5141, 44, 46, 50fvmptd 6993 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
52 nnne0 12274 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5352neneqd 2937 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
5453adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
5554iffalsed 4511 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = (0g𝑅))
5640, 51, 553eqtrd 2774 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = (0g𝑅))
57 eqcom 2742 . . . . . . . . . . . . 13 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) ↔ (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
5857biimpi 216 . . . . . . . . . . . 12 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
5956, 58sylan9eq 2790 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6059ex 412 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6160ralimdva 3152 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6261imp 406 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6334adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
642, 36, 31ply1sclid 22225 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
6564eqcomd 2741 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6663, 65syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6762, 66jca 511 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
6867ex 412 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
6921, 68biimtrid 242 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7019, 69syld 47 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
718, 70mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
72 c0ex 11229 . . . 4 0 ∈ V
73 fveq2 6876 . . . . . 6 (𝑛 = 0 → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
74 fveq2 6876 . . . . . 6 (𝑛 = 0 → ((coe1‘(𝑥𝑀𝑦))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘0))
7573, 74eqeq12d 2751 . . . . 5 (𝑛 = 0 → (((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
7675ralunsn 4870 . . . 4 (0 ∈ V → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7772, 76mp1i 13 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7871, 77mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
79 df-n0 12502 . . 3 0 = (ℕ ∪ {0})
8079raleqi 3303 . 2 (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
8178, 80sylibr 234 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cun 3924  ifcif 4500  {csn 4601  cmpt 5201  cfv 6531  (class class class)co 7405  Fincfn 8959  0cc0 11129  cn 12240  0cn0 12501  Basecbs 17228  0gc0g 17453  Ringcrg 20193  algSccascl 21812  Poly1cpl1 22112  coe1cco1 22113   Mat cmat 22345   ConstPolyMat ccpmat 22641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mat 22346  df-cpmat 22644
This theorem is referenced by:  m2cpminvid2  22693
  Copyright terms: Public domain W3C validator