MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2cpminvid2lem Structured version   Visualization version   GIF version

Theorem m2cpminvid2lem 22689
Description: Lemma for m2cpminvid2 22690. (Contributed by AV, 12-Nov-2019.) (Revised by AV, 14-Dec-2019.)
Hypotheses
Ref Expression
m2cpminvid2lem.s 𝑆 = (𝑁 ConstPolyMat 𝑅)
m2cpminvid2lem.p 𝑃 = (Poly1𝑅)
Assertion
Ref Expression
m2cpminvid2lem (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Distinct variable groups:   𝑛,𝑀   𝑛,𝑁   𝑃,𝑛   𝑅,𝑛   𝑆,𝑛   𝑥,𝑛   𝑦,𝑛
Allowed substitution hints:   𝑃(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem m2cpminvid2lem
Dummy variables 𝑖 𝑗 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 m2cpminvid2lem.s . . . . . . . 8 𝑆 = (𝑁 ConstPolyMat 𝑅)
2 m2cpminvid2lem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
3 eqid 2733 . . . . . . . 8 (𝑁 Mat 𝑃) = (𝑁 Mat 𝑃)
4 eqid 2733 . . . . . . . 8 (Base‘(𝑁 Mat 𝑃)) = (Base‘(𝑁 Mat 𝑃))
51, 2, 3, 4cpmatelimp 22647 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑀𝑆 → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))))
653impia 1117 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → (𝑀 ∈ (Base‘(𝑁 Mat 𝑃)) ∧ ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅)))
76simprd 495 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
87adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅))
9 fvoveq1 7378 . . . . . . . . . 10 (𝑖 = 𝑥 → (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑥𝑀𝑗)))
109fveq1d 6833 . . . . . . . . 9 (𝑖 = 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑗))‘𝑘))
1110eqeq1d 2735 . . . . . . . 8 (𝑖 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
1211ralbidv 3156 . . . . . . 7 (𝑖 = 𝑥 → (∀𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅)))
13 oveq2 7363 . . . . . . . . . . 11 (𝑗 = 𝑦 → (𝑥𝑀𝑗) = (𝑥𝑀𝑦))
1413fveq2d 6835 . . . . . . . . . 10 (𝑗 = 𝑦 → (coe1‘(𝑥𝑀𝑗)) = (coe1‘(𝑥𝑀𝑦)))
1514fveq1d 6833 . . . . . . . . 9 (𝑗 = 𝑦 → ((coe1‘(𝑥𝑀𝑗))‘𝑘) = ((coe1‘(𝑥𝑀𝑦))‘𝑘))
1615eqeq1d 2735 . . . . . . . 8 (𝑗 = 𝑦 → (((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1716ralbidv 3156 . . . . . . 7 (𝑗 = 𝑦 → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑗))‘𝑘) = (0g𝑅) ↔ ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1812, 17rspc2v 3584 . . . . . 6 ((𝑥𝑁𝑦𝑁) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
1918adantl 481 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → ∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅)))
20 fveqeq2 6840 . . . . . . 7 (𝑘 = 𝑛 → (((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)))
2120cbvralvw 3211 . . . . . 6 (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅))
22 simpl2 1193 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑅 ∈ Ring)
23 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑃) = (Base‘𝑃)
24 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑥𝑁)
25 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑦𝑁)
261, 2, 3, 4cpmatpmat 22645 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
2726adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → 𝑀 ∈ (Base‘(𝑁 Mat 𝑃)))
283, 23, 4, 24, 25, 27matecld 22361 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑥𝑀𝑦) ∈ (Base‘𝑃))
29 0nn0 12407 . . . . . . . . . . . . . . . . . 18 0 ∈ ℕ0
30 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (coe1‘(𝑥𝑀𝑦)) = (coe1‘(𝑥𝑀𝑦))
31 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) = (Base‘𝑅)
3230, 23, 2, 31coe1fvalcl 22144 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑀𝑦) ∈ (Base‘𝑃) ∧ 0 ∈ ℕ0) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3328, 29, 32sylancl 586 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅))
3422, 33jca 511 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
3534adantr 480 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
36 eqid 2733 . . . . . . . . . . . . . . . 16 (algSc‘𝑃) = (algSc‘𝑃)
37 eqid 2733 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
382, 36, 31, 37coe1scl 22220 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
3935, 38syl 17 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
4039fveq1d 6833 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛))
41 eqidd 2734 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))) = (𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅))))
42 eqeq1 2737 . . . . . . . . . . . . . . . 16 (𝑙 = 𝑛 → (𝑙 = 0 ↔ 𝑛 = 0))
4342ifbid 4500 . . . . . . . . . . . . . . 15 (𝑙 = 𝑛 → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
4443adantl 481 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ 𝑙 = 𝑛) → if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
45 nnnn0 12399 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
4645adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
47 fvex 6844 . . . . . . . . . . . . . . . 16 ((coe1‘(𝑥𝑀𝑦))‘0) ∈ V
48 fvex 6844 . . . . . . . . . . . . . . . 16 (0g𝑅) ∈ V
4947, 48ifex 4527 . . . . . . . . . . . . . . 15 if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V
5049a1i 11 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) ∈ V)
5141, 44, 46, 50fvmptd 6945 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((𝑙 ∈ ℕ0 ↦ if(𝑙 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))‘𝑛) = if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)))
52 nnne0 12170 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
5352neneqd 2934 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
5453adantl 481 . . . . . . . . . . . . . 14 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
5554iffalsed 4487 . . . . . . . . . . . . 13 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → if(𝑛 = 0, ((coe1‘(𝑥𝑀𝑦))‘0), (0g𝑅)) = (0g𝑅))
5640, 51, 553eqtrd 2772 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = (0g𝑅))
57 eqcom 2740 . . . . . . . . . . . . 13 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) ↔ (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
5857biimpi 216 . . . . . . . . . . . 12 (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (0g𝑅) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
5956, 58sylan9eq 2788 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) ∧ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6059ex 412 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ 𝑛 ∈ ℕ) → (((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6160ralimdva 3145 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛)))
6261imp 406 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
6334adantr 480 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)))
642, 36, 31ply1sclid 22221 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘(𝑥𝑀𝑦))‘0) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
6564eqcomd 2739 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ ((coe1‘(𝑥𝑀𝑦))‘0) ∈ (Base‘𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6663, 65syl 17 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))
6762, 66jca 511 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) ∧ ∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
6867ex 412 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑛) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
6921, 68biimtrid 242 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑘 ∈ ℕ ((coe1‘(𝑥𝑀𝑦))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7019, 69syld 47 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑖𝑁𝑗𝑁𝑘 ∈ ℕ ((coe1‘(𝑖𝑀𝑗))‘𝑘) = (0g𝑅) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
718, 70mpd 15 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
72 c0ex 11117 . . . 4 0 ∈ V
73 fveq2 6831 . . . . . 6 (𝑛 = 0 → ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0))
74 fveq2 6831 . . . . . 6 (𝑛 = 0 → ((coe1‘(𝑥𝑀𝑦))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘0))
7573, 74eqeq12d 2749 . . . . 5 (𝑛 = 0 → (((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0)))
7675ralunsn 4847 . . . 4 (0 ∈ V → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7772, 76mp1i 13 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → (∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ∧ ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘0) = ((coe1‘(𝑥𝑀𝑦))‘0))))
7871, 77mpbird 257 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
79 df-n0 12393 . . 3 0 = (ℕ ∪ {0})
8079raleqi 3291 . 2 (∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪ {0})((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
8178, 80sylibr 234 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝑆) ∧ (𝑥𝑁𝑦𝑁)) → ∀𝑛 ∈ ℕ0 ((coe1‘((algSc‘𝑃)‘((coe1‘(𝑥𝑀𝑦))‘0)))‘𝑛) = ((coe1‘(𝑥𝑀𝑦))‘𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  Vcvv 3437  cun 3896  ifcif 4476  {csn 4577  cmpt 5176  cfv 6489  (class class class)co 7355  Fincfn 8879  0cc0 11017  cn 12136  0cn0 12392  Basecbs 17127  0gc0g 17350  Ringcrg 20159  algSccascl 21798  Poly1cpl1 22108  coe1cco1 22109   Mat cmat 22342   ConstPolyMat ccpmat 22638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-ofr 7620  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-sup 9337  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-fzo 13562  df-seq 13916  df-hash 14245  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-gsum 17353  df-prds 17358  df-pws 17360  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-mhm 18699  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-ghm 19133  df-cntz 19237  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-subrng 20470  df-subrg 20494  df-lmod 20804  df-lss 20874  df-sra 21116  df-rgmod 21117  df-dsmm 21678  df-frlm 21693  df-ascl 21801  df-psr 21856  df-mvr 21857  df-mpl 21858  df-opsr 21860  df-psr1 22111  df-vr1 22112  df-ply1 22113  df-coe1 22114  df-mat 22343  df-cpmat 22641
This theorem is referenced by:  m2cpminvid2  22690
  Copyright terms: Public domain W3C validator