MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1coe0bi Structured version   Visualization version   GIF version

Theorem cply1coe0bi 21671
Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cply1coe0.k 𝐾 = (Base‘𝑅)
cply1coe0.0 0 = (0g𝑅)
cply1coe0.p 𝑃 = (Poly1𝑅)
cply1coe0.b 𝐵 = (Base‘𝑃)
cply1coe0.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
cply1coe0bi ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠𝐾 𝑀 = (𝐴𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ))
Distinct variable groups:   𝑛,𝐾   𝑅,𝑛   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐾,𝑠   𝑛,𝑀,𝑠   𝑅,𝑠   0 ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠)   0 (𝑛)

Proof of Theorem cply1coe0bi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cply1coe0.k . . . . . 6 𝐾 = (Base‘𝑅)
2 cply1coe0.0 . . . . . 6 0 = (0g𝑅)
3 cply1coe0.p . . . . . 6 𝑃 = (Poly1𝑅)
4 cply1coe0.b . . . . . 6 𝐵 = (Base‘𝑃)
5 cply1coe0.a . . . . . 6 𝐴 = (algSc‘𝑃)
61, 2, 3, 4, 5cply1coe0 21670 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 )
76ad4ant13 749 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠𝐾) ∧ 𝑀 = (𝐴𝑠)) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 )
8 fveq2 6842 . . . . . . . 8 (𝑀 = (𝐴𝑠) → (coe1𝑀) = (coe1‘(𝐴𝑠)))
98fveq1d 6844 . . . . . . 7 (𝑀 = (𝐴𝑠) → ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴𝑠))‘𝑛))
109eqeq1d 2738 . . . . . 6 (𝑀 = (𝐴𝑠) → (((coe1𝑀)‘𝑛) = 0 ↔ ((coe1‘(𝐴𝑠))‘𝑛) = 0 ))
1110ralbidv 3174 . . . . 5 (𝑀 = (𝐴𝑠) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 ))
1211adantl 482 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠𝐾) ∧ 𝑀 = (𝐴𝑠)) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 ))
137, 12mpbird 256 . . 3 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠𝐾) ∧ 𝑀 = (𝐴𝑠)) → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 )
1413rexlimdva2 3154 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠𝐾 𝑀 = (𝐴𝑠) → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ))
15 simpr 485 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
16 0nn0 12428 . . . . . 6 0 ∈ ℕ0
17 eqid 2736 . . . . . . 7 (coe1𝑀) = (coe1𝑀)
1817, 4, 3, 1coe1fvalcl 21583 . . . . . 6 ((𝑀𝐵 ∧ 0 ∈ ℕ0) → ((coe1𝑀)‘0) ∈ 𝐾)
1915, 16, 18sylancl 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) ∈ 𝐾)
2019adantr 481 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘0) ∈ 𝐾)
21 fveq2 6842 . . . . . 6 (𝑠 = ((coe1𝑀)‘0) → (𝐴𝑠) = (𝐴‘((coe1𝑀)‘0)))
2221eqeq2d 2747 . . . . 5 (𝑠 = ((coe1𝑀)‘0) → (𝑀 = (𝐴𝑠) ↔ 𝑀 = (𝐴‘((coe1𝑀)‘0))))
2322adantl 482 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) ∧ 𝑠 = ((coe1𝑀)‘0)) → (𝑀 = (𝐴𝑠) ↔ 𝑀 = (𝐴‘((coe1𝑀)‘0))))
24 simpl 483 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
25 eqid 2736 . . . . . . . . . 10 (Scalar‘𝑃) = (Scalar‘𝑃)
263ply1ring 21619 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
273ply1lmod 21623 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
28 eqid 2736 . . . . . . . . . 10 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
295, 25, 26, 27, 28, 4asclf 21285 . . . . . . . . 9 (𝑅 ∈ Ring → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵)
3029adantr 481 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵)
31 eqid 2736 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
3217, 4, 3, 31coe1fvalcl 21583 . . . . . . . . . 10 ((𝑀𝐵 ∧ 0 ∈ ℕ0) → ((coe1𝑀)‘0) ∈ (Base‘𝑅))
3315, 16, 32sylancl 586 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) ∈ (Base‘𝑅))
343ply1sca 21624 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
3534eqcomd 2742 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
3635fveq2d 6846 . . . . . . . . . 10 (𝑅 ∈ Ring → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
3736adantr 481 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
3833, 37eleqtrrd 2841 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) ∈ (Base‘(Scalar‘𝑃)))
3930, 38ffvelcdmd 7036 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵)
4024, 15, 393jca 1128 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵))
4140adantr 481 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → (𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵))
42 simpr 485 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘𝑛) = 0 )
433, 5, 1, 2coe1scl 21658 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1𝑀)‘0) ∈ 𝐾) → (coe1‘(𝐴‘((coe1𝑀)‘0))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((coe1𝑀)‘0), 0 )))
4419, 43syldan 591 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1‘(𝐴‘((coe1𝑀)‘0))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((coe1𝑀)‘0), 0 )))
4544adantr 481 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → (coe1‘(𝐴‘((coe1𝑀)‘0))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((coe1𝑀)‘0), 0 )))
46 nnne0 12187 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4746neneqd 2948 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
4847adantl 482 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
4948adantr 481 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑛 = 0)
50 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
5150notbid 317 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0))
5251adantl 482 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0))
5349, 52mpbird 256 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑘 = 0)
5453iffalsed 4497 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → if(𝑘 = 0, ((coe1𝑀)‘0), 0 ) = 0 )
55 nnnn0 12420 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5655adantl 482 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
572fvexi 6856 . . . . . . . . . . . . . 14 0 ∈ V
5857a1i 11 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → 0 ∈ V)
5945, 54, 56, 58fvmptd 6955 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) = 0 )
6059eqcomd 2742 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → 0 = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
6160adantr 481 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ ((coe1𝑀)‘𝑛) = 0 ) → 0 = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
6242, 61eqtrd 2776 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
6362ex 413 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → (((coe1𝑀)‘𝑛) = 0 → ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛)))
6463ralimdva 3164 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛)))
6564imp 407 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
663, 5, 1ply1sclid 21659 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1𝑀)‘0) ∈ 𝐾) → ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
6719, 66syldan 591 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
6867adantr 481 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
69 df-n0 12414 . . . . . . . 8 0 = (ℕ ∪ {0})
7069raleqi 3311 . . . . . . 7 (∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪ {0})((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
71 c0ex 11149 . . . . . . . 8 0 ∈ V
72 fveq2 6842 . . . . . . . . . 10 (𝑛 = 0 → ((coe1𝑀)‘𝑛) = ((coe1𝑀)‘0))
73 fveq2 6842 . . . . . . . . . 10 (𝑛 = 0 → ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
7472, 73eqeq12d 2752 . . . . . . . . 9 (𝑛 = 0 → (((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0)))
7574ralunsn 4851 . . . . . . . 8 (0 ∈ V → (∀𝑛 ∈ (ℕ ∪ {0})((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ∧ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))))
7671, 75mp1i 13 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → (∀𝑛 ∈ (ℕ ∪ {0})((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ∧ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))))
7770, 76bitrid 282 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → (∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ∧ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))))
7865, 68, 77mpbir2and 711 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
79 eqid 2736 . . . . . 6 (coe1‘(𝐴‘((coe1𝑀)‘0))) = (coe1‘(𝐴‘((coe1𝑀)‘0)))
803, 4, 17, 79eqcoe1ply1eq 21668 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) → 𝑀 = (𝐴‘((coe1𝑀)‘0))))
8141, 78, 80sylc 65 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → 𝑀 = (𝐴‘((coe1𝑀)‘0)))
8220, 23, 81rspcedvd 3583 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ∃𝑠𝐾 𝑀 = (𝐴𝑠))
8382ex 413 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 → ∃𝑠𝐾 𝑀 = (𝐴𝑠)))
8414, 83impbid 211 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠𝐾 𝑀 = (𝐴𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cun 3908  ifcif 4486  {csn 4586  cmpt 5188  wf 6492  cfv 6496  0cc0 11051  cn 12153  0cn0 12413  Basecbs 17083  Scalarcsca 17136  0gc0g 17321  Ringcrg 19964  algSccascl 21258  Poly1cpl1 21548  coe1cco1 21549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-hom 17157  df-cco 17158  df-0g 17323  df-gsum 17324  df-prds 17329  df-pws 17331  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-srg 19918  df-ring 19966  df-subrg 20220  df-lmod 20324  df-lss 20393  df-ascl 21261  df-psr 21311  df-mvr 21312  df-mpl 21313  df-opsr 21315  df-psr1 21551  df-vr1 21552  df-ply1 21553  df-coe1 21554
This theorem is referenced by:  cpmatel2  22062
  Copyright terms: Public domain W3C validator