MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cply1coe0bi Structured version   Visualization version   GIF version

Theorem cply1coe0bi 22240
Description: A polynomial is constant (i.e. a "lifted scalar") iff all but the first coefficient are zero. (Contributed by AV, 16-Nov-2019.)
Hypotheses
Ref Expression
cply1coe0.k 𝐾 = (Base‘𝑅)
cply1coe0.0 0 = (0g𝑅)
cply1coe0.p 𝑃 = (Poly1𝑅)
cply1coe0.b 𝐵 = (Base‘𝑃)
cply1coe0.a 𝐴 = (algSc‘𝑃)
Assertion
Ref Expression
cply1coe0bi ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠𝐾 𝑀 = (𝐴𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ))
Distinct variable groups:   𝑛,𝐾   𝑅,𝑛   𝐴,𝑛,𝑠   𝐵,𝑛,𝑠   𝐾,𝑠   𝑛,𝑀,𝑠   𝑅,𝑠   0 ,𝑠
Allowed substitution hints:   𝑃(𝑛,𝑠)   0 (𝑛)

Proof of Theorem cply1coe0bi
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 cply1coe0.k . . . . . 6 𝐾 = (Base‘𝑅)
2 cply1coe0.0 . . . . . 6 0 = (0g𝑅)
3 cply1coe0.p . . . . . 6 𝑃 = (Poly1𝑅)
4 cply1coe0.b . . . . . 6 𝐵 = (Base‘𝑃)
5 cply1coe0.a . . . . . 6 𝐴 = (algSc‘𝑃)
61, 2, 3, 4, 5cply1coe0 22239 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑠𝐾) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 )
76ad4ant13 751 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠𝐾) ∧ 𝑀 = (𝐴𝑠)) → ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 )
8 fveq2 6876 . . . . . . . 8 (𝑀 = (𝐴𝑠) → (coe1𝑀) = (coe1‘(𝐴𝑠)))
98fveq1d 6878 . . . . . . 7 (𝑀 = (𝐴𝑠) → ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴𝑠))‘𝑛))
109eqeq1d 2737 . . . . . 6 (𝑀 = (𝐴𝑠) → (((coe1𝑀)‘𝑛) = 0 ↔ ((coe1‘(𝐴𝑠))‘𝑛) = 0 ))
1110ralbidv 3163 . . . . 5 (𝑀 = (𝐴𝑠) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 ))
1211adantl 481 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠𝐾) ∧ 𝑀 = (𝐴𝑠)) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ↔ ∀𝑛 ∈ ℕ ((coe1‘(𝐴𝑠))‘𝑛) = 0 ))
137, 12mpbird 257 . . 3 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠𝐾) ∧ 𝑀 = (𝐴𝑠)) → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 )
1413rexlimdva2 3143 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠𝐾 𝑀 = (𝐴𝑠) → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ))
15 simpr 484 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀𝐵)
16 0nn0 12516 . . . . . 6 0 ∈ ℕ0
17 eqid 2735 . . . . . . 7 (coe1𝑀) = (coe1𝑀)
1817, 4, 3, 1coe1fvalcl 22148 . . . . . 6 ((𝑀𝐵 ∧ 0 ∈ ℕ0) → ((coe1𝑀)‘0) ∈ 𝐾)
1915, 16, 18sylancl 586 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) ∈ 𝐾)
2019adantr 480 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘0) ∈ 𝐾)
21 fveq2 6876 . . . . . 6 (𝑠 = ((coe1𝑀)‘0) → (𝐴𝑠) = (𝐴‘((coe1𝑀)‘0)))
2221eqeq2d 2746 . . . . 5 (𝑠 = ((coe1𝑀)‘0) → (𝑀 = (𝐴𝑠) ↔ 𝑀 = (𝐴‘((coe1𝑀)‘0))))
2322adantl 481 . . . 4 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) ∧ 𝑠 = ((coe1𝑀)‘0)) → (𝑀 = (𝐴𝑠) ↔ 𝑀 = (𝐴‘((coe1𝑀)‘0))))
24 simpl 482 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
25 eqid 2735 . . . . . . . . . 10 (Scalar‘𝑃) = (Scalar‘𝑃)
263ply1ring 22183 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
273ply1lmod 22187 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
28 eqid 2735 . . . . . . . . . 10 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
295, 25, 26, 27, 28, 4asclf 21842 . . . . . . . . 9 (𝑅 ∈ Ring → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵)
3029adantr 480 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝐴:(Base‘(Scalar‘𝑃))⟶𝐵)
31 eqid 2735 . . . . . . . . . . 11 (Base‘𝑅) = (Base‘𝑅)
3217, 4, 3, 31coe1fvalcl 22148 . . . . . . . . . 10 ((𝑀𝐵 ∧ 0 ∈ ℕ0) → ((coe1𝑀)‘0) ∈ (Base‘𝑅))
3315, 16, 32sylancl 586 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) ∈ (Base‘𝑅))
343ply1sca 22188 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
3534eqcomd 2741 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
3635fveq2d 6880 . . . . . . . . . 10 (𝑅 ∈ Ring → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
3736adantr 480 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
3833, 37eleqtrrd 2837 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) ∈ (Base‘(Scalar‘𝑃)))
3930, 38ffvelcdmd 7075 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵)
4024, 15, 393jca 1128 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵))
4140adantr 480 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → (𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵))
42 simpr 484 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘𝑛) = 0 )
433, 5, 1, 2coe1scl 22224 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ ((coe1𝑀)‘0) ∈ 𝐾) → (coe1‘(𝐴‘((coe1𝑀)‘0))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((coe1𝑀)‘0), 0 )))
4419, 43syldan 591 . . . . . . . . . . . . . 14 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (coe1‘(𝐴‘((coe1𝑀)‘0))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((coe1𝑀)‘0), 0 )))
4544adantr 480 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → (coe1‘(𝐴‘((coe1𝑀)‘0))) = (𝑘 ∈ ℕ0 ↦ if(𝑘 = 0, ((coe1𝑀)‘0), 0 )))
46 nnne0 12274 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
4746neneqd 2937 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
4847adantl 481 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → ¬ 𝑛 = 0)
4948adantr 480 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑛 = 0)
50 eqeq1 2739 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑛 → (𝑘 = 0 ↔ 𝑛 = 0))
5150notbid 318 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑛 → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0))
5251adantl 481 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → (¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0))
5349, 52mpbird 257 . . . . . . . . . . . . . 14 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → ¬ 𝑘 = 0)
5453iffalsed 4511 . . . . . . . . . . . . 13 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ 𝑘 = 𝑛) → if(𝑘 = 0, ((coe1𝑀)‘0), 0 ) = 0 )
55 nnnn0 12508 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
5655adantl 481 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
572fvexi 6890 . . . . . . . . . . . . . 14 0 ∈ V
5857a1i 11 . . . . . . . . . . . . 13 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → 0 ∈ V)
5945, 54, 56, 58fvmptd 6993 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) = 0 )
6059eqcomd 2741 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → 0 = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
6160adantr 480 . . . . . . . . . 10 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ ((coe1𝑀)‘𝑛) = 0 ) → 0 = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
6242, 61eqtrd 2770 . . . . . . . . 9 ((((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) ∧ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
6362ex 412 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑛 ∈ ℕ) → (((coe1𝑀)‘𝑛) = 0 → ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛)))
6463ralimdva 3152 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛)))
6564imp 406 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
663, 5, 1ply1sclid 22225 . . . . . . . 8 ((𝑅 ∈ Ring ∧ ((coe1𝑀)‘0) ∈ 𝐾) → ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
6719, 66syldan 591 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
6867adantr 480 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
69 df-n0 12502 . . . . . . . 8 0 = (ℕ ∪ {0})
7069raleqi 3303 . . . . . . 7 (∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ ∀𝑛 ∈ (ℕ ∪ {0})((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
71 c0ex 11229 . . . . . . . 8 0 ∈ V
72 fveq2 6876 . . . . . . . . . 10 (𝑛 = 0 → ((coe1𝑀)‘𝑛) = ((coe1𝑀)‘0))
73 fveq2 6876 . . . . . . . . . 10 (𝑛 = 0 → ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))
7472, 73eqeq12d 2751 . . . . . . . . 9 (𝑛 = 0 → (((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0)))
7574ralunsn 4870 . . . . . . . 8 (0 ∈ V → (∀𝑛 ∈ (ℕ ∪ {0})((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ∧ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))))
7671, 75mp1i 13 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → (∀𝑛 ∈ (ℕ ∪ {0})((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ∧ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))))
7770, 76bitrid 283 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → (∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ↔ (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) ∧ ((coe1𝑀)‘0) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘0))))
7865, 68, 77mpbir2and 713 . . . . 5 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛))
79 eqid 2735 . . . . . 6 (coe1‘(𝐴‘((coe1𝑀)‘0))) = (coe1‘(𝐴‘((coe1𝑀)‘0)))
803, 4, 17, 79eqcoe1ply1eq 22237 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑀𝐵 ∧ (𝐴‘((coe1𝑀)‘0)) ∈ 𝐵) → (∀𝑛 ∈ ℕ0 ((coe1𝑀)‘𝑛) = ((coe1‘(𝐴‘((coe1𝑀)‘0)))‘𝑛) → 𝑀 = (𝐴‘((coe1𝑀)‘0))))
8141, 78, 80sylc 65 . . . 4 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → 𝑀 = (𝐴‘((coe1𝑀)‘0)))
8220, 23, 81rspcedvd 3603 . . 3 (((𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ) → ∃𝑠𝐾 𝑀 = (𝐴𝑠))
8382ex 412 . 2 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 → ∃𝑠𝐾 𝑀 = (𝐴𝑠)))
8414, 83impbid 212 1 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠𝐾 𝑀 = (𝐴𝑠) ↔ ∀𝑛 ∈ ℕ ((coe1𝑀)‘𝑛) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  Vcvv 3459  cun 3924  ifcif 4500  {csn 4601  cmpt 5201  wf 6527  cfv 6531  0cc0 11129  cn 12240  0cn0 12501  Basecbs 17228  Scalarcsca 17274  0gc0g 17453  Ringcrg 20193  algSccascl 21812  Poly1cpl1 22112  coe1cco1 22113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118
This theorem is referenced by:  cpmatel2  22651
  Copyright terms: Public domain W3C validator