| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3cli | Structured version Visualization version GIF version | ||
| Description: A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| s3cli | ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s3 14871 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
| 2 | s2cli 14902 | . 2 ⊢ 〈“𝐴𝐵”〉 ∈ Word V | |
| 3 | 1, 2 | cats1cli 14879 | 1 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3464 Word cword 14535 〈“cs2 14863 〈“cs3 14864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-s2 14870 df-s3 14871 |
| This theorem is referenced by: s4cli 14904 s4fv0 14917 s4fv1 14918 s4fv2 14919 s4fv3 14920 s4len 14921 lsws3 14927 s1s4 14947 s4s4 14954 s3s4 14955 s7rn 14987 s3sndisj 14989 s3iunsndisj 14990 uncfval 18254 2wlkd 29903 2wlkond 29904 2trlond 29906 2pthd 29907 2pthond 29909 umgr2adedgwlkonALT 29914 umgr2wlk 29916 elwwlks2 29933 elwspths2spth 29934 3wlkd 30136 3trlond 30139 3pthond 30141 3spthond 30143 uhgr3cyclex 30148 konigsberglem1 30218 konigsberglem2 30219 konigsberglem3 30220 fusgreghash2wspv 30301 s3clhash 32879 umgr2cycllem 35086 |
| Copyright terms: Public domain | W3C validator |