![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3cli | Structured version Visualization version GIF version |
Description: A length 3 string is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s3cli | ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s3 14900 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
2 | s2cli 14931 | . 2 ⊢ 〈“𝐴𝐵”〉 ∈ Word V | |
3 | 1, 2 | cats1cli 14908 | 1 ⊢ 〈“𝐴𝐵𝐶”〉 ∈ Word V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 Word cword 14564 〈“cs2 14892 〈“cs3 14893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-card 10010 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 df-fz 13570 df-fzo 13714 df-hash 14382 df-word 14565 df-concat 14621 df-s1 14646 df-s2 14899 df-s3 14900 |
This theorem is referenced by: s4cli 14933 s4fv0 14946 s4fv1 14947 s4fv2 14948 s4fv3 14949 s4len 14950 lsws3 14956 s1s4 14976 s4s4 14983 s3s4 14984 s7rn 15016 s3sndisj 15018 s3iunsndisj 15019 uncfval 18306 2wlkd 29971 2wlkond 29972 2trlond 29974 2pthd 29975 2pthond 29977 umgr2adedgwlkonALT 29982 umgr2wlk 29984 elwwlks2 30001 elwspths2spth 30002 3wlkd 30204 3trlond 30207 3pthond 30209 3spthond 30211 uhgr3cyclex 30216 konigsberglem1 30286 konigsberglem2 30287 konigsberglem3 30288 fusgreghash2wspv 30369 s3clhash 32916 umgr2cycllem 35110 |
Copyright terms: Public domain | W3C validator |