![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eqs2s1eq | Structured version Visualization version GIF version |
Description: Two length 3 words are equal iff the corresponding length 2 words and singleton words consisting of their symbols are equal. (Contributed by AV, 4-Jan-2022.) |
Ref | Expression |
---|---|
s3eqs2s1eq | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s3 14806 | . . . 4 ⊢ ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) | |
2 | 1 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)) |
3 | df-s3 14806 | . . . 4 ⊢ ⟨“𝐷𝐸𝐹”⟩ = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) | |
4 | 3 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → ⟨“𝐷𝐸𝐹”⟩ = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)) |
5 | 2, 4 | eqeq12d 2742 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩))) |
6 | s2cl 14835 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉) | |
7 | s1cl 14558 | . . . . . 6 ⊢ (𝐶 ∈ 𝑉 → ⟨“𝐶”⟩ ∈ Word 𝑉) | |
8 | 6, 7 | anim12i 612 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐶 ∈ 𝑉) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉)) |
9 | 8 | 3impa 1107 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉)) |
10 | 9 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉)) |
11 | s2cl 14835 | . . . . . 6 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) → ⟨“𝐷𝐸”⟩ ∈ Word 𝑉) | |
12 | s1cl 14558 | . . . . . 6 ⊢ (𝐹 ∈ 𝑉 → ⟨“𝐹”⟩ ∈ Word 𝑉) | |
13 | 11, 12 | anim12i 612 | . . . . 5 ⊢ (((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉) ∧ 𝐹 ∈ 𝑉) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉)) |
14 | 13 | 3impa 1107 | . . . 4 ⊢ ((𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉)) |
15 | 14 | adantl 481 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉)) |
16 | s2len 14846 | . . . . 5 ⊢ (♯‘⟨“𝐴𝐵”⟩) = 2 | |
17 | s2len 14846 | . . . . 5 ⊢ (♯‘⟨“𝐷𝐸”⟩) = 2 | |
18 | 16, 17 | eqtr4i 2757 | . . . 4 ⊢ (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩) |
19 | 18 | a1i 11 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩)) |
20 | ccatopth 14672 | . . 3 ⊢ (((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉) ∧ (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉) ∧ (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩)) → ((⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩))) | |
21 | 10, 15, 19, 20 | syl3anc 1368 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → ((⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩))) |
22 | 5, 21 | bitrd 279 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉) ∧ (𝐷 ∈ 𝑉 ∧ 𝐸 ∈ 𝑉 ∧ 𝐹 ∈ 𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ‘cfv 6537 (class class class)co 7405 2c2 12271 ♯chash 14295 Word cword 14470 ++ cconcat 14526 ⟨“cs1 14551 ⟨“cs2 14798 ⟨“cs3 14799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-hash 14296 df-word 14471 df-concat 14527 df-s1 14552 df-substr 14597 df-pfx 14627 df-s2 14805 df-s3 14806 |
This theorem is referenced by: s3eq3seq 14896 |
Copyright terms: Public domain | W3C validator |