MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eqs2s1eq Structured version   Visualization version   GIF version

Theorem s3eqs2s1eq 13892
Description: Two length 3 words are equal iff the corresponding length 2 words and singleton words consisting of their symbols are equal. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eqs2s1eq (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))

Proof of Theorem s3eqs2s1eq
StepHypRef Expression
1 df-s3 13803 . . . 4 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
21a1i 11 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩))
3 df-s3 13803 . . . 4 ⟨“𝐷𝐸𝐹”⟩ = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
43a1i 11 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ⟨“𝐷𝐸𝐹”⟩ = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩))
52, 4eqeq12d 2786 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)))
6 s2cl 13832 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
7 s1cl 13582 . . . . . 6 (𝐶𝑉 → ⟨“𝐶”⟩ ∈ Word 𝑉)
86, 7anim12i 600 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ 𝐶𝑉) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉))
983impa 1100 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉))
109adantr 466 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉))
11 s2cl 13832 . . . . . 6 ((𝐷𝑉𝐸𝑉) → ⟨“𝐷𝐸”⟩ ∈ Word 𝑉)
12 s1cl 13582 . . . . . 6 (𝐹𝑉 → ⟨“𝐹”⟩ ∈ Word 𝑉)
1311, 12anim12i 600 . . . . 5 (((𝐷𝑉𝐸𝑉) ∧ 𝐹𝑉) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉))
14133impa 1100 . . . 4 ((𝐷𝑉𝐸𝑉𝐹𝑉) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉))
1514adantl 467 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉))
16 s2len 13843 . . . . 5 (♯‘⟨“𝐴𝐵”⟩) = 2
17 s2len 13843 . . . . 5 (♯‘⟨“𝐷𝐸”⟩) = 2
1816, 17eqtr4i 2796 . . . 4 (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩)
1918a1i 11 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩))
20 ccatopth 13679 . . 3 (((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉) ∧ (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉) ∧ (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩)) → ((⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
2110, 15, 19, 20syl3anc 1476 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ((⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
225, 21bitrd 268 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  2c2 11272  chash 13321  Word cword 13487   ++ cconcat 13489  ⟨“cs1 13490  ⟨“cs2 13795  ⟨“cs3 13796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322  df-word 13495  df-concat 13497  df-s1 13498  df-substr 13499  df-s2 13802  df-s3 13803
This theorem is referenced by:  s3eq3seq  13893
  Copyright terms: Public domain W3C validator