MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eqs2s1eq Structured version   Visualization version   GIF version

Theorem s3eqs2s1eq 14742
Description: Two length 3 words are equal iff the corresponding length 2 words and singleton words consisting of their symbols are equal. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
s3eqs2s1eq (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))

Proof of Theorem s3eqs2s1eq
StepHypRef Expression
1 df-s3 14653 . . . 4 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
21a1i 11 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩))
3 df-s3 14653 . . . 4 ⟨“𝐷𝐸𝐹”⟩ = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)
43a1i 11 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ⟨“𝐷𝐸𝐹”⟩ = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩))
52, 4eqeq12d 2752 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩)))
6 s2cl 14682 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
7 s1cl 14398 . . . . . 6 (𝐶𝑉 → ⟨“𝐶”⟩ ∈ Word 𝑉)
86, 7anim12i 613 . . . . 5 (((𝐴𝑉𝐵𝑉) ∧ 𝐶𝑉) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉))
983impa 1109 . . . 4 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉))
109adantr 481 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉))
11 s2cl 14682 . . . . . 6 ((𝐷𝑉𝐸𝑉) → ⟨“𝐷𝐸”⟩ ∈ Word 𝑉)
12 s1cl 14398 . . . . . 6 (𝐹𝑉 → ⟨“𝐹”⟩ ∈ Word 𝑉)
1311, 12anim12i 613 . . . . 5 (((𝐷𝑉𝐸𝑉) ∧ 𝐹𝑉) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉))
14133impa 1109 . . . 4 ((𝐷𝑉𝐸𝑉𝐹𝑉) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉))
1514adantl 482 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉))
16 s2len 14693 . . . . 5 (♯‘⟨“𝐴𝐵”⟩) = 2
17 s2len 14693 . . . . 5 (♯‘⟨“𝐷𝐸”⟩) = 2
1816, 17eqtr4i 2767 . . . 4 (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩)
1918a1i 11 . . 3 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩))
20 ccatopth 14519 . . 3 (((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ ⟨“𝐶”⟩ ∈ Word 𝑉) ∧ (⟨“𝐷𝐸”⟩ ∈ Word 𝑉 ∧ ⟨“𝐹”⟩ ∈ Word 𝑉) ∧ (♯‘⟨“𝐴𝐵”⟩) = (♯‘⟨“𝐷𝐸”⟩)) → ((⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
2110, 15, 19, 20syl3anc 1370 . 2 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → ((⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐷𝐸”⟩ ++ ⟨“𝐹”⟩) ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
225, 21bitrd 278 1 (((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐷𝑉𝐸𝑉𝐹𝑉)) → (⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩ ↔ (⟨“𝐴𝐵”⟩ = ⟨“𝐷𝐸”⟩ ∧ ⟨“𝐶”⟩ = ⟨“𝐹”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  cfv 6473  (class class class)co 7329  2c2 12121  chash 14137  Word cword 14309   ++ cconcat 14365  ⟨“cs1 14391  ⟨“cs2 14645  ⟨“cs3 14646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642  ax-cnex 11020  ax-resscn 11021  ax-1cn 11022  ax-icn 11023  ax-addcl 11024  ax-addrcl 11025  ax-mulcl 11026  ax-mulrcl 11027  ax-mulcom 11028  ax-addass 11029  ax-mulass 11030  ax-distr 11031  ax-i2m1 11032  ax-1ne0 11033  ax-1rid 11034  ax-rnegex 11035  ax-rrecex 11036  ax-cnre 11037  ax-pre-lttri 11038  ax-pre-lttrn 11039  ax-pre-ltadd 11040  ax-pre-mulgt0 11041
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-br 5090  df-opab 5152  df-mpt 5173  df-tr 5207  df-id 5512  df-eprel 5518  df-po 5526  df-so 5527  df-fr 5569  df-we 5571  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6232  df-ord 6299  df-on 6300  df-lim 6301  df-suc 6302  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-riota 7286  df-ov 7332  df-oprab 7333  df-mpo 7334  df-om 7773  df-1st 7891  df-2nd 7892  df-frecs 8159  df-wrecs 8190  df-recs 8264  df-rdg 8303  df-1o 8359  df-er 8561  df-en 8797  df-dom 8798  df-sdom 8799  df-fin 8800  df-card 9788  df-pnf 11104  df-mnf 11105  df-xr 11106  df-ltxr 11107  df-le 11108  df-sub 11300  df-neg 11301  df-nn 12067  df-2 12129  df-n0 12327  df-z 12413  df-uz 12676  df-fz 13333  df-fzo 13476  df-hash 14138  df-word 14310  df-concat 14366  df-s1 14392  df-substr 14444  df-pfx 14474  df-s2 14652  df-s3 14653
This theorem is referenced by:  s3eq3seq  14743
  Copyright terms: Public domain W3C validator