![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version |
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cs2 14890 | . 2 class 〈“𝐴𝐵”〉 |
4 | 1 | cs1 14643 | . . 3 class 〈“𝐴”〉 |
5 | 2 | cs1 14643 | . . 3 class 〈“𝐵”〉 |
6 | cconcat 14618 | . . 3 class ++ | |
7 | 4, 5, 6 | co 7448 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
8 | 3, 7 | wceq 1537 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: cats2cat 14911 s2eqd 14912 s2cld 14920 s2cli 14929 s2fv0 14936 s2fv1 14937 s2len 14938 s2prop 14956 s2co 14969 s1s2 14972 s2s2 14978 s4s2 14979 s2s5 14983 s5s2 14984 s2eq2s1eq 14985 swrds2 14989 repsw2 14999 ccatw2s1ccatws2 15003 s2rn 15012 ofs2 15020 gsumws2 18877 efginvrel2 19769 efgredlemc 19787 frgpnabllem1 19915 2pthon3v 29976 konigsberglem1 30284 konigsberglem2 30285 konigsberglem3 30286 cshw1s2 32927 ofcs2 34522 |
Copyright terms: Public domain | W3C validator |