MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s2 Structured version   Visualization version   GIF version

Definition df-s2 14755
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)

Detailed syntax breakdown of Definition df-s2
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cs2 14748 . 2 class ⟨“𝐴𝐵”⟩
41cs1 14503 . . 3 class ⟨“𝐴”⟩
52cs1 14503 . . 3 class ⟨“𝐵”⟩
6 cconcat 14477 . . 3 class ++
74, 5, 6co 7346 . 2 class (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
83, 7wceq 1541 1 wff ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  cats2cat  14769  s2eqd  14770  s2cld  14778  s2cli  14787  s2fv0  14794  s2fv1  14795  s2len  14796  s2prop  14814  s2co  14827  s1s2  14830  s2s2  14836  s4s2  14837  s2s5  14841  s5s2  14842  s2eq2s1eq  14843  swrds2  14847  repsw2  14857  ccatw2s1ccatws2  14861  s2rn  14870  ofs2  14878  gsumws2  18750  efginvrel2  19640  efgredlemc  19658  frgpnabllem1  19786  2pthon3v  29922  konigsberglem1  30230  konigsberglem2  30231  konigsberglem3  30232  cshw1s2  32939  ofcs2  34556
  Copyright terms: Public domain W3C validator