![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version |
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cs2 14039 | . 2 class 〈“𝐴𝐵”〉 |
4 | 1 | cs1 13793 | . . 3 class 〈“𝐴”〉 |
5 | 2 | cs1 13793 | . . 3 class 〈“𝐵”〉 |
6 | cconcat 13768 | . . 3 class ++ | |
7 | 4, 5, 6 | co 7016 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
8 | 3, 7 | wceq 1522 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: cats2cat 14060 s2eqd 14061 s2cld 14069 s2cli 14078 s2fv0 14085 s2fv1 14086 s2len 14087 s2prop 14105 s2co 14118 s1s2 14121 s2s2 14127 s4s2 14128 s2s5 14132 s5s2 14133 s2eq2s1eq 14134 swrds2 14138 repsw2 14148 ccatw2s1ccatws2 14152 ofs2 14165 gsumws2 17818 efginvrel2 18580 efgredlemc 18598 frgpnabllem1 18716 2pthon3v 27409 konigsberglem1 27721 konigsberglem2 27722 konigsberglem3 27723 cshw1s2 30308 ofcs2 31432 |
Copyright terms: Public domain | W3C validator |