| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version | ||
| Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cs2 14766 | . 2 class 〈“𝐴𝐵”〉 |
| 4 | 1 | cs1 14520 | . . 3 class 〈“𝐴”〉 |
| 5 | 2 | cs1 14520 | . . 3 class 〈“𝐵”〉 |
| 6 | cconcat 14495 | . . 3 class ++ | |
| 7 | 4, 5, 6 | co 7353 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| 8 | 3, 7 | wceq 1540 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cats2cat 14787 s2eqd 14788 s2cld 14796 s2cli 14805 s2fv0 14812 s2fv1 14813 s2len 14814 s2prop 14832 s2co 14845 s1s2 14848 s2s2 14854 s4s2 14855 s2s5 14859 s5s2 14860 s2eq2s1eq 14861 swrds2 14865 repsw2 14875 ccatw2s1ccatws2 14879 s2rn 14888 ofs2 14896 gsumws2 18734 efginvrel2 19624 efgredlemc 19642 frgpnabllem1 19770 2pthon3v 29906 konigsberglem1 30214 konigsberglem2 30215 konigsberglem3 30216 cshw1s2 32915 ofcs2 34515 |
| Copyright terms: Public domain | W3C validator |