![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version |
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cs2 14876 | . 2 class 〈“𝐴𝐵”〉 |
4 | 1 | cs1 14629 | . . 3 class 〈“𝐴”〉 |
5 | 2 | cs1 14629 | . . 3 class 〈“𝐵”〉 |
6 | cconcat 14604 | . . 3 class ++ | |
7 | 4, 5, 6 | co 7430 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
8 | 3, 7 | wceq 1536 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: cats2cat 14897 s2eqd 14898 s2cld 14906 s2cli 14915 s2fv0 14922 s2fv1 14923 s2len 14924 s2prop 14942 s2co 14955 s1s2 14958 s2s2 14964 s4s2 14965 s2s5 14969 s5s2 14970 s2eq2s1eq 14971 swrds2 14975 repsw2 14985 ccatw2s1ccatws2 14989 s2rn 14998 ofs2 15006 gsumws2 18867 efginvrel2 19759 efgredlemc 19777 frgpnabllem1 19905 2pthon3v 29972 konigsberglem1 30280 konigsberglem2 30281 konigsberglem3 30282 cshw1s2 32929 ofcs2 34538 |
Copyright terms: Public domain | W3C validator |