| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version | ||
| Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cs2 14858 | . 2 class 〈“𝐴𝐵”〉 |
| 4 | 1 | cs1 14611 | . . 3 class 〈“𝐴”〉 |
| 5 | 2 | cs1 14611 | . . 3 class 〈“𝐵”〉 |
| 6 | cconcat 14586 | . . 3 class ++ | |
| 7 | 4, 5, 6 | co 7403 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| 8 | 3, 7 | wceq 1540 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cats2cat 14879 s2eqd 14880 s2cld 14888 s2cli 14897 s2fv0 14904 s2fv1 14905 s2len 14906 s2prop 14924 s2co 14937 s1s2 14940 s2s2 14946 s4s2 14947 s2s5 14951 s5s2 14952 s2eq2s1eq 14953 swrds2 14957 repsw2 14967 ccatw2s1ccatws2 14971 s2rn 14980 ofs2 14988 gsumws2 18818 efginvrel2 19706 efgredlemc 19724 frgpnabllem1 19852 2pthon3v 29871 konigsberglem1 30179 konigsberglem2 30180 konigsberglem3 30181 cshw1s2 32882 ofcs2 34523 |
| Copyright terms: Public domain | W3C validator |