![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version |
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s2 | ⊢ ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cs2 14792 | . 2 class ⟨“𝐴𝐵”⟩ |
4 | 1 | cs1 14545 | . . 3 class ⟨“𝐴”⟩ |
5 | 2 | cs1 14545 | . . 3 class ⟨“𝐵”⟩ |
6 | cconcat 14520 | . . 3 class ++ | |
7 | 4, 5, 6 | co 7409 | . 2 class (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) |
8 | 3, 7 | wceq 1542 | 1 wff ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩) |
Colors of variables: wff setvar class |
This definition is referenced by: cats2cat 14813 s2eqd 14814 s2cld 14822 s2cli 14831 s2fv0 14838 s2fv1 14839 s2len 14840 s2prop 14858 s2co 14871 s1s2 14874 s2s2 14880 s4s2 14881 s2s5 14885 s5s2 14886 s2eq2s1eq 14887 swrds2 14891 repsw2 14901 ccatw2s1ccatws2 14905 ofs2 14918 gsumws2 18723 efginvrel2 19595 efgredlemc 19613 frgpnabllem1 19741 2pthon3v 29197 konigsberglem1 29505 konigsberglem2 29506 konigsberglem3 29507 cshw1s2 32124 ofcs2 33556 |
Copyright terms: Public domain | W3C validator |