MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s2 Structured version   Visualization version   GIF version

Definition df-s2 14814
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)

Detailed syntax breakdown of Definition df-s2
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cs2 14807 . 2 class ⟨“𝐴𝐵”⟩
41cs1 14560 . . 3 class ⟨“𝐴”⟩
52cs1 14560 . . 3 class ⟨“𝐵”⟩
6 cconcat 14535 . . 3 class ++
74, 5, 6co 7387 . 2 class (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
83, 7wceq 1540 1 wff ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  cats2cat  14828  s2eqd  14829  s2cld  14837  s2cli  14846  s2fv0  14853  s2fv1  14854  s2len  14855  s2prop  14873  s2co  14886  s1s2  14889  s2s2  14895  s4s2  14896  s2s5  14900  s5s2  14901  s2eq2s1eq  14902  swrds2  14906  repsw2  14916  ccatw2s1ccatws2  14920  s2rn  14929  ofs2  14937  gsumws2  18769  efginvrel2  19657  efgredlemc  19675  frgpnabllem1  19803  2pthon3v  29873  konigsberglem1  30181  konigsberglem2  30182  konigsberglem3  30183  cshw1s2  32882  ofcs2  34536
  Copyright terms: Public domain W3C validator