Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version |
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cs2 14563 | . 2 class 〈“𝐴𝐵”〉 |
4 | 1 | cs1 14309 | . . 3 class 〈“𝐴”〉 |
5 | 2 | cs1 14309 | . . 3 class 〈“𝐵”〉 |
6 | cconcat 14282 | . . 3 class ++ | |
7 | 4, 5, 6 | co 7284 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
8 | 3, 7 | wceq 1539 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
Colors of variables: wff setvar class |
This definition is referenced by: cats2cat 14584 s2eqd 14585 s2cld 14593 s2cli 14602 s2fv0 14609 s2fv1 14610 s2len 14611 s2prop 14629 s2co 14642 s1s2 14645 s2s2 14651 s4s2 14652 s2s5 14656 s5s2 14657 s2eq2s1eq 14658 swrds2 14662 repsw2 14672 ccatw2s1ccatws2 14676 ccatw2s1ccatws2OLD 14677 ofs2 14691 gsumws2 18490 efginvrel2 19342 efgredlemc 19360 frgpnabllem1 19483 2pthon3v 28317 konigsberglem1 28625 konigsberglem2 28626 konigsberglem3 28627 cshw1s2 31241 ofcs2 32533 |
Copyright terms: Public domain | W3C validator |