MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-s2 Structured version   Visualization version   GIF version

Definition df-s2 14489
Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.)
Assertion
Ref Expression
df-s2 ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)

Detailed syntax breakdown of Definition df-s2
StepHypRef Expression
1 cA . . 3 class 𝐴
2 cB . . 3 class 𝐵
31, 2cs2 14482 . 2 class ⟨“𝐴𝐵”⟩
41cs1 14228 . . 3 class ⟨“𝐴”⟩
52cs1 14228 . . 3 class ⟨“𝐵”⟩
6 cconcat 14201 . . 3 class ++
74, 5, 6co 7255 . 2 class (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
83, 7wceq 1539 1 wff ⟨“𝐴𝐵”⟩ = (⟨“𝐴”⟩ ++ ⟨“𝐵”⟩)
Colors of variables: wff setvar class
This definition is referenced by:  cats2cat  14503  s2eqd  14504  s2cld  14512  s2cli  14521  s2fv0  14528  s2fv1  14529  s2len  14530  s2prop  14548  s2co  14561  s1s2  14564  s2s2  14570  s4s2  14571  s2s5  14575  s5s2  14576  s2eq2s1eq  14577  swrds2  14581  repsw2  14591  ccatw2s1ccatws2  14595  ccatw2s1ccatws2OLD  14596  ofs2  14610  gsumws2  18396  efginvrel2  19248  efgredlemc  19266  frgpnabllem1  19389  2pthon3v  28209  konigsberglem1  28517  konigsberglem2  28518  konigsberglem3  28519  cshw1s2  31134  ofcs2  32424
  Copyright terms: Public domain W3C validator