| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version | ||
| Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cs2 14807 | . 2 class 〈“𝐴𝐵”〉 |
| 4 | 1 | cs1 14560 | . . 3 class 〈“𝐴”〉 |
| 5 | 2 | cs1 14560 | . . 3 class 〈“𝐵”〉 |
| 6 | cconcat 14535 | . . 3 class ++ | |
| 7 | 4, 5, 6 | co 7387 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| 8 | 3, 7 | wceq 1540 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cats2cat 14828 s2eqd 14829 s2cld 14837 s2cli 14846 s2fv0 14853 s2fv1 14854 s2len 14855 s2prop 14873 s2co 14886 s1s2 14889 s2s2 14895 s4s2 14896 s2s5 14900 s5s2 14901 s2eq2s1eq 14902 swrds2 14906 repsw2 14916 ccatw2s1ccatws2 14920 s2rn 14929 ofs2 14937 gsumws2 18769 efginvrel2 19657 efgredlemc 19675 frgpnabllem1 19803 2pthon3v 29873 konigsberglem1 30181 konigsberglem2 30182 konigsberglem3 30183 cshw1s2 32882 ofcs2 34536 |
| Copyright terms: Public domain | W3C validator |