| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version | ||
| Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cs2 14814 | . 2 class 〈“𝐴𝐵”〉 |
| 4 | 1 | cs1 14567 | . . 3 class 〈“𝐴”〉 |
| 5 | 2 | cs1 14567 | . . 3 class 〈“𝐵”〉 |
| 6 | cconcat 14542 | . . 3 class ++ | |
| 7 | 4, 5, 6 | co 7390 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| 8 | 3, 7 | wceq 1540 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cats2cat 14835 s2eqd 14836 s2cld 14844 s2cli 14853 s2fv0 14860 s2fv1 14861 s2len 14862 s2prop 14880 s2co 14893 s1s2 14896 s2s2 14902 s4s2 14903 s2s5 14907 s5s2 14908 s2eq2s1eq 14909 swrds2 14913 repsw2 14923 ccatw2s1ccatws2 14927 s2rn 14936 ofs2 14944 gsumws2 18776 efginvrel2 19664 efgredlemc 19682 frgpnabllem1 19810 2pthon3v 29880 konigsberglem1 30188 konigsberglem2 30189 konigsberglem3 30190 cshw1s2 32889 ofcs2 34543 |
| Copyright terms: Public domain | W3C validator |