| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-s2 | Structured version Visualization version GIF version | ||
| Description: Define the length 2 word constructor. (Contributed by Mario Carneiro, 26-Feb-2016.) |
| Ref | Expression |
|---|---|
| df-s2 | ⊢ 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cs2 14752 | . 2 class 〈“𝐴𝐵”〉 |
| 4 | 1 | cs1 14507 | . . 3 class 〈“𝐴”〉 |
| 5 | 2 | cs1 14507 | . . 3 class 〈“𝐵”〉 |
| 6 | cconcat 14481 | . . 3 class ++ | |
| 7 | 4, 5, 6 | co 7354 | . 2 class (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| 8 | 3, 7 | wceq 1541 | 1 wff 〈“𝐴𝐵”〉 = (〈“𝐴”〉 ++ 〈“𝐵”〉) |
| Colors of variables: wff setvar class |
| This definition is referenced by: cats2cat 14773 s2eqd 14774 s2cld 14782 s2cli 14791 s2fv0 14798 s2fv1 14799 s2len 14800 s2prop 14818 s2co 14831 s1s2 14834 s2s2 14840 s4s2 14841 s2s5 14845 s5s2 14846 s2eq2s1eq 14847 swrds2 14851 repsw2 14861 ccatw2s1ccatws2 14865 s2rn 14874 ofs2 14882 gsumws2 18754 efginvrel2 19643 efgredlemc 19661 frgpnabllem1 19789 2pthon3v 29925 konigsberglem1 30236 konigsberglem2 30237 konigsberglem3 30238 cshw1s2 32950 ofcs2 34581 nthrucw 47011 |
| Copyright terms: Public domain | W3C validator |