MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3tpop Structured version   Visualization version   GIF version

Theorem s3tpop 14818
Description: A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021.)
Assertion
Ref Expression
s3tpop ((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵𝐶”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})

Proof of Theorem s3tpop
StepHypRef Expression
1 df-s3 14758 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2 s2cl 14787 . . . 4 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑆)
3 cats1un 14630 . . . 4 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
42, 3stoic3 1777 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}))
5 s2prop 14816 . . . . 5 ((𝐴𝑆𝐵𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
653adant3 1132 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩})
7 s2len 14798 . . . . . . 7 (♯‘⟨“𝐴𝐵”⟩) = 2
87opeq1i 4827 . . . . . 6 ⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩ = ⟨2, 𝐶
98sneqi 4586 . . . . 5 {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} = {⟨2, 𝐶⟩}
109a1i 11 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) → {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩} = {⟨2, 𝐶⟩})
116, 10uneq12d 4118 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ∪ {⟨(♯‘⟨“𝐴𝐵”⟩), 𝐶⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩}))
12 df-tp 4580 . . . . 5 {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩} = ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩})
1312eqcomi 2742 . . . 4 ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩}
1413a1i 11 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ({⟨0, 𝐴⟩, ⟨1, 𝐵⟩} ∪ {⟨2, 𝐶⟩}) = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
154, 11, 143eqtrd 2772 . 2 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
161, 15eqtrid 2780 1 ((𝐴𝑆𝐵𝑆𝐶𝑆) → ⟨“𝐴𝐵𝐶”⟩ = {⟨0, 𝐴⟩, ⟨1, 𝐵⟩, ⟨2, 𝐶⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cun 3896  {csn 4575  {cpr 4577  {ctp 4579  cop 4581  cfv 6486  (class class class)co 7352  0cc0 11013  1c1 11014  2c2 12187  chash 14239  Word cword 14422   ++ cconcat 14479  ⟨“cs1 14505  ⟨“cs2 14750  ⟨“cs3 14751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-hash 14240  df-word 14423  df-concat 14480  df-s1 14506  df-s2 14757  df-s3 14758
This theorem is referenced by:  funcnvs3  14823  wrdlen3s3  14858
  Copyright terms: Public domain W3C validator