![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3tpop | Structured version Visualization version GIF version |
Description: A length 3 word is an unordered triple of ordered pairs. (Contributed by AV, 23-Jan-2021.) |
Ref | Expression |
---|---|
s3tpop | ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 〈“𝐴𝐵𝐶”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s3 14836 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
2 | s2cl 14865 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 ∈ Word 𝑆) | |
3 | cats1un 14707 | . . . 4 ⊢ ((〈“𝐴𝐵”〉 ∈ Word 𝑆 ∧ 𝐶 ∈ 𝑆) → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝐴𝐵”〉 ∪ {〈(♯‘〈“𝐴𝐵”〉), 𝐶〉})) | |
4 | 2, 3 | stoic3 1770 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝐴𝐵”〉 ∪ {〈(♯‘〈“𝐴𝐵”〉), 𝐶〉})) |
5 | s2prop 14894 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) | |
6 | 5 | 3adant3 1129 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 〈“𝐴𝐵”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉}) |
7 | s2len 14876 | . . . . . . 7 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
8 | 7 | opeq1i 4878 | . . . . . 6 ⊢ 〈(♯‘〈“𝐴𝐵”〉), 𝐶〉 = 〈2, 𝐶〉 |
9 | 8 | sneqi 4641 | . . . . 5 ⊢ {〈(♯‘〈“𝐴𝐵”〉), 𝐶〉} = {〈2, 𝐶〉} |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → {〈(♯‘〈“𝐴𝐵”〉), 𝐶〉} = {〈2, 𝐶〉}) |
11 | 6, 10 | uneq12d 4161 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (〈“𝐴𝐵”〉 ∪ {〈(♯‘〈“𝐴𝐵”〉), 𝐶〉}) = ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉})) |
12 | df-tp 4635 | . . . . 5 ⊢ {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉} = ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉}) | |
13 | 12 | eqcomi 2734 | . . . 4 ⊢ ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉}) = {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉} |
14 | 13 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → ({〈0, 𝐴〉, 〈1, 𝐵〉} ∪ {〈2, 𝐶〉}) = {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉}) |
15 | 4, 11, 14 | 3eqtrd 2769 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉}) |
16 | 1, 15 | eqtrid 2777 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → 〈“𝐴𝐵𝐶”〉 = {〈0, 𝐴〉, 〈1, 𝐵〉, 〈2, 𝐶〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∪ cun 3942 {csn 4630 {cpr 4632 {ctp 4634 〈cop 4636 ‘cfv 6549 (class class class)co 7419 0cc0 11140 1c1 11141 2c2 12300 ♯chash 14325 Word cword 14500 ++ cconcat 14556 〈“cs1 14581 〈“cs2 14828 〈“cs3 14829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-hash 14326 df-word 14501 df-concat 14557 df-s1 14582 df-s2 14835 df-s3 14836 |
This theorem is referenced by: funcnvs3 14901 wrdlen3s3 14936 |
Copyright terms: Public domain | W3C validator |