![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3len | Structured version Visualization version GIF version |
Description: The length of a length 3 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s3len | ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s3 14047 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
2 | s2cli 14078 | . 2 ⊢ 〈“𝐴𝐵”〉 ∈ Word V | |
3 | s2len 14087 | . 2 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
4 | 2p1e3 11627 | . 2 ⊢ (2 + 1) = 3 | |
5 | 1, 2, 3, 4 | cats1len 14058 | 1 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1522 ‘cfv 6225 2c2 11540 3c3 11541 ♯chash 13540 〈“cs2 14039 〈“cs3 14040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-hash 13541 df-word 13708 df-concat 13769 df-s1 13794 df-s2 14046 df-s3 14047 |
This theorem is referenced by: s4fv0 14093 s4fv1 14094 s4fv2 14095 s4fv3 14096 s4len 14097 lsws3 14103 s4prop 14108 s3fn 14109 eqwrds3 14159 wrdl3s3 14160 trgcgrg 25983 tgcgr4 25999 israg 26165 iscgra 26277 isinag 26307 isleag 26316 iseqlg 26336 2wlkdlem1 27391 2pthdlem1 27396 2pthd 27406 wwlks2onv 27419 elwspths2spth 27433 wlk2v2e 27623 3wlkdlem1 27625 3wlkdlem2 27626 3wlkdlem4 27628 3pthdlem1 27630 3pthd 27640 3cycld 27644 3cyclpd 27645 s3rn 30302 s3f1 30303 s3clhash 30304 cyc3fv1 30416 cyc3fv2 30417 cyc3fv3 30418 circlemethhgt 31531 amgm3d 40057 |
Copyright terms: Public domain | W3C validator |