Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > s3len | Structured version Visualization version GIF version |
Description: The length of a length 3 string. (Contributed by Mario Carneiro, 26-Feb-2016.) |
Ref | Expression |
---|---|
s3len | ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-s3 14414 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
2 | s2cli 14445 | . 2 ⊢ 〈“𝐴𝐵”〉 ∈ Word V | |
3 | s2len 14454 | . 2 ⊢ (♯‘〈“𝐴𝐵”〉) = 2 | |
4 | 2p1e3 11972 | . 2 ⊢ (2 + 1) = 3 | |
5 | 1, 2, 3, 4 | cats1len 14425 | 1 ⊢ (♯‘〈“𝐴𝐵𝐶”〉) = 3 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ‘cfv 6380 2c2 11885 3c3 11886 ♯chash 13896 〈“cs2 14406 〈“cs3 14407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-concat 14126 df-s1 14153 df-s2 14413 df-s3 14414 |
This theorem is referenced by: s4fv0 14460 s4fv1 14461 s4fv2 14462 s4fv3 14463 s4len 14464 lsws3 14470 s4prop 14475 s3fn 14476 eqwrds3 14528 wrdl3s3 14529 trgcgrg 26606 tgcgr4 26622 israg 26788 iscgra 26900 isinag 26929 isleag 26938 iseqlg 26958 2wlkdlem1 28009 2pthdlem1 28014 2pthd 28024 wwlks2onv 28037 elwspths2spth 28051 wlk2v2e 28240 3wlkdlem1 28242 3wlkdlem2 28243 3wlkdlem4 28245 3pthdlem1 28247 3pthd 28257 3cycld 28261 3cyclpd 28262 s3rn 30940 s3f1 30941 s3clhash 30942 cyc3fv1 31123 cyc3fv2 31124 cyc3fv3 31125 circlemethhgt 32335 amgm3d 41488 |
Copyright terms: Public domain | W3C validator |