| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3co | Structured version Visualization version GIF version | ||
| Description: Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2co.1 | ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| s2co.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| s2co.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑋) |
| s3co.4 | ⊢ (𝜑 → 𝐶 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| s3co | ⊢ (𝜑 → (𝐹 ∘ 〈“𝐴𝐵𝐶”〉) = 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-s3 14825 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
| 2 | s2co.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 3 | s2co.3 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑋) | |
| 4 | 2, 3 | s2cld 14847 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵”〉 ∈ Word 𝑋) |
| 5 | s3co.4 | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑋) | |
| 6 | s2co.1 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) | |
| 7 | 6, 2, 3 | s2co 14896 | . 2 ⊢ (𝜑 → (𝐹 ∘ 〈“𝐴𝐵”〉) = 〈“(𝐹‘𝐴)(𝐹‘𝐵)”〉) |
| 8 | df-s3 14825 | . 2 ⊢ 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉 = (〈“(𝐹‘𝐴)(𝐹‘𝐵)”〉 ++ 〈“(𝐹‘𝐶)”〉) | |
| 9 | 1, 4, 5, 6, 7, 8 | cats1co 14832 | 1 ⊢ (𝜑 → (𝐹 ∘ 〈“𝐴𝐵𝐶”〉) = 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∘ ccom 5650 ⟶wf 6515 ‘cfv 6519 〈“cs2 14817 〈“cs3 14818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-fz 13482 df-fzo 13629 df-hash 14306 df-word 14489 df-concat 14546 df-s1 14571 df-s2 14824 df-s3 14825 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |