MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3co Structured version   Visualization version   GIF version

Theorem s3co 14825
Description: Mapping a length 3 string by a function. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2co.1 (𝜑𝐹:𝑋𝑌)
s2co.2 (𝜑𝐴𝑋)
s2co.3 (𝜑𝐵𝑋)
s3co.4 (𝜑𝐶𝑋)
Assertion
Ref Expression
s3co (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵𝐶”⟩) = ⟨“(𝐹𝐴)(𝐹𝐵)(𝐹𝐶)”⟩)

Proof of Theorem s3co
StepHypRef Expression
1 df-s3 14753 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2 s2co.2 . . 3 (𝜑𝐴𝑋)
3 s2co.3 . . 3 (𝜑𝐵𝑋)
42, 3s2cld 14775 . 2 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word 𝑋)
5 s3co.4 . 2 (𝜑𝐶𝑋)
6 s2co.1 . 2 (𝜑𝐹:𝑋𝑌)
76, 2, 3s2co 14824 . 2 (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵”⟩) = ⟨“(𝐹𝐴)(𝐹𝐵)”⟩)
8 df-s3 14753 . 2 ⟨“(𝐹𝐴)(𝐹𝐵)(𝐹𝐶)”⟩ = (⟨“(𝐹𝐴)(𝐹𝐵)”⟩ ++ ⟨“(𝐹𝐶)”⟩)
91, 4, 5, 6, 7, 8cats1co 14760 1 (𝜑 → (𝐹 ∘ ⟨“𝐴𝐵𝐶”⟩) = ⟨“(𝐹𝐴)(𝐹𝐵)(𝐹𝐶)”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ccom 5620  wf 6477  cfv 6481  ⟨“cs2 14745  ⟨“cs3 14746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-concat 14475  df-s1 14501  df-s2 14752  df-s3 14753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator