MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eqd Structured version   Visualization version   GIF version

Theorem s3eqd 14328
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
Assertion
Ref Expression
s3eqd (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)

Proof of Theorem s3eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
31, 2s2eqd 14327 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
4 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
54s1eqd 14057 . . 3 (𝜑 → ⟨“𝐶”⟩ = ⟨“𝑃”⟩)
63, 5oveq12d 7201 . 2 (𝜑 → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩))
7 df-s3 14313 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
8 df-s3 14313 . 2 ⟨“𝑁𝑂𝑃”⟩ = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩)
96, 7, 83eqtr4g 2799 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  (class class class)co 7183   ++ cconcat 14024  ⟨“cs1 14051  ⟨“cs2 14305  ⟨“cs3 14306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-v 3402  df-un 3858  df-in 3860  df-ss 3870  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-iota 6308  df-fv 6358  df-ov 7186  df-s1 14052  df-s2 14312  df-s3 14313
This theorem is referenced by:  s4eqd  14329  s3eq2  14334  s3sndisj  14429  s3iunsndisj  14430  ragcgr  26666  perpneq  26673  isperp2  26674  isperp2d  26675  footexALT  26677  footexlem2  26679  foot  26681  perprag  26685  perpdragALT  26686  colperpexlem1  26689  lmiisolem  26755  hypcgrlem1  26758  hypcgrlem2  26759  trgcopyeu  26765  iscgra  26768  iscgra1  26769  iscgrad  26770  sacgr  26790  isleag  26806  isleagd  26807  iseqlg  26826
  Copyright terms: Public domain W3C validator