| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
| Ref | Expression |
|---|---|
| s3eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | 1, 2 | s2eqd 14887 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| 4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 5 | 4 | s1eqd 14624 | . . 3 ⊢ (𝜑 → 〈“𝐶”〉 = 〈“𝑃”〉) |
| 6 | 3, 5 | oveq12d 7428 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉)) |
| 7 | df-s3 14873 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
| 8 | df-s3 14873 | . 2 ⊢ 〈“𝑁𝑂𝑃”〉 = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉) | |
| 9 | 6, 7, 8 | 3eqtr4g 2796 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7410 ++ cconcat 14593 〈“cs1 14618 〈“cs2 14865 〈“cs3 14866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-iota 6489 df-fv 6544 df-ov 7413 df-s1 14619 df-s2 14872 df-s3 14873 |
| This theorem is referenced by: s4eqd 14889 s3eq2 14894 s3sndisj 14991 s3iunsndisj 14992 ragcgr 28691 perpneq 28698 isperp2 28699 isperp2d 28700 footexALT 28702 footexlem2 28704 foot 28706 perprag 28710 perpdragALT 28711 colperpexlem1 28714 lmiisolem 28780 hypcgrlem1 28783 hypcgrlem2 28784 trgcopyeu 28790 iscgra 28793 iscgra1 28794 iscgrad 28795 sacgr 28815 isleag 28831 isleagd 28832 iseqlg 28851 |
| Copyright terms: Public domain | W3C validator |