MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eqd Structured version   Visualization version   GIF version

Theorem s3eqd 14888
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
Assertion
Ref Expression
s3eqd (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)

Proof of Theorem s3eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
31, 2s2eqd 14887 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
4 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
54s1eqd 14624 . . 3 (𝜑 → ⟨“𝐶”⟩ = ⟨“𝑃”⟩)
63, 5oveq12d 7428 . 2 (𝜑 → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩))
7 df-s3 14873 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
8 df-s3 14873 . 2 ⟨“𝑁𝑂𝑃”⟩ = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩)
96, 7, 83eqtr4g 2796 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  (class class class)co 7410   ++ cconcat 14593  ⟨“cs1 14618  ⟨“cs2 14865  ⟨“cs3 14866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544  df-ov 7413  df-s1 14619  df-s2 14872  df-s3 14873
This theorem is referenced by:  s4eqd  14889  s3eq2  14894  s3sndisj  14991  s3iunsndisj  14992  ragcgr  28691  perpneq  28698  isperp2  28699  isperp2d  28700  footexALT  28702  footexlem2  28704  foot  28706  perprag  28710  perpdragALT  28711  colperpexlem1  28714  lmiisolem  28780  hypcgrlem1  28783  hypcgrlem2  28784  trgcopyeu  28790  iscgra  28793  iscgra1  28794  iscgrad  28795  sacgr  28815  isleag  28831  isleagd  28832  iseqlg  28851
  Copyright terms: Public domain W3C validator