MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eqd Structured version   Visualization version   GIF version

Theorem s3eqd 14811
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
Assertion
Ref Expression
s3eqd (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)

Proof of Theorem s3eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
31, 2s2eqd 14810 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
4 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
54s1eqd 14547 . . 3 (𝜑 → ⟨“𝐶”⟩ = ⟨“𝑃”⟩)
63, 5oveq12d 7419 . 2 (𝜑 → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩))
7 df-s3 14796 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
8 df-s3 14796 . 2 ⟨“𝑁𝑂𝑃”⟩ = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩)
96, 7, 83eqtr4g 2789 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  (class class class)co 7401   ++ cconcat 14516  ⟨“cs1 14541  ⟨“cs2 14788  ⟨“cs3 14789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-iota 6485  df-fv 6541  df-ov 7404  df-s1 14542  df-s2 14795  df-s3 14796
This theorem is referenced by:  s4eqd  14812  s3eq2  14817  s3sndisj  14910  s3iunsndisj  14911  ragcgr  28382  perpneq  28389  isperp2  28390  isperp2d  28391  footexALT  28393  footexlem2  28395  foot  28397  perprag  28401  perpdragALT  28402  colperpexlem1  28405  lmiisolem  28471  hypcgrlem1  28474  hypcgrlem2  28475  trgcopyeu  28481  iscgra  28484  iscgra1  28485  iscgrad  28486  sacgr  28506  isleag  28522  isleagd  28523  iseqlg  28542
  Copyright terms: Public domain W3C validator