| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
| Ref | Expression |
|---|---|
| s3eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | 1, 2 | s2eqd 14767 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| 4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 5 | 4 | s1eqd 14506 | . . 3 ⊢ (𝜑 → 〈“𝐶”〉 = 〈“𝑃”〉) |
| 6 | 3, 5 | oveq12d 7364 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉)) |
| 7 | df-s3 14753 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
| 8 | df-s3 14753 | . 2 ⊢ 〈“𝑁𝑂𝑃”〉 = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉) | |
| 9 | 6, 7, 8 | 3eqtr4g 2791 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 (class class class)co 7346 ++ cconcat 14474 〈“cs1 14500 〈“cs2 14745 〈“cs3 14746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-s1 14501 df-s2 14752 df-s3 14753 |
| This theorem is referenced by: s4eqd 14769 s3eq2 14774 s3sndisj 14871 s3iunsndisj 14872 ragcgr 28683 perpneq 28690 isperp2 28691 isperp2d 28692 footexALT 28694 footexlem2 28696 foot 28698 perprag 28702 perpdragALT 28703 colperpexlem1 28706 lmiisolem 28772 hypcgrlem1 28775 hypcgrlem2 28776 trgcopyeu 28782 iscgra 28785 iscgra1 28786 iscgrad 28787 sacgr 28807 isleag 28823 isleagd 28824 iseqlg 28843 |
| Copyright terms: Public domain | W3C validator |