![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
Ref | Expression |
---|---|
s3eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | 1, 2 | s2eqd 14810 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
5 | 4 | s1eqd 14547 | . . 3 ⊢ (𝜑 → 〈“𝐶”〉 = 〈“𝑃”〉) |
6 | 3, 5 | oveq12d 7419 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉)) |
7 | df-s3 14796 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
8 | df-s3 14796 | . 2 ⊢ 〈“𝑁𝑂𝑃”〉 = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉) | |
9 | 6, 7, 8 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 (class class class)co 7401 ++ cconcat 14516 〈“cs1 14541 〈“cs2 14788 〈“cs3 14789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-iota 6485 df-fv 6541 df-ov 7404 df-s1 14542 df-s2 14795 df-s3 14796 |
This theorem is referenced by: s4eqd 14812 s3eq2 14817 s3sndisj 14910 s3iunsndisj 14911 ragcgr 28382 perpneq 28389 isperp2 28390 isperp2d 28391 footexALT 28393 footexlem2 28395 foot 28397 perprag 28401 perpdragALT 28402 colperpexlem1 28405 lmiisolem 28471 hypcgrlem1 28474 hypcgrlem2 28475 trgcopyeu 28481 iscgra 28484 iscgra1 28485 iscgrad 28486 sacgr 28506 isleag 28522 isleagd 28523 iseqlg 28542 |
Copyright terms: Public domain | W3C validator |