![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
Ref | Expression |
---|---|
s3eqd | ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | 1, 2 | s2eqd 14820 | . . 3 ⊢ (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩) |
4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
5 | 4 | s1eqd 14557 | . . 3 ⊢ (𝜑 → ⟨“𝐶”⟩ = ⟨“𝑃”⟩) |
6 | 3, 5 | oveq12d 7431 | . 2 ⊢ (𝜑 → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩)) |
7 | df-s3 14806 | . 2 ⊢ ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) | |
8 | df-s3 14806 | . 2 ⊢ ⟨“𝑁𝑂𝑃”⟩ = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩) | |
9 | 6, 7, 8 | 3eqtr4g 2795 | 1 ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 (class class class)co 7413 ++ cconcat 14526 ⟨“cs1 14551 ⟨“cs2 14798 ⟨“cs3 14799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-iota 6496 df-fv 6552 df-ov 7416 df-s1 14552 df-s2 14805 df-s3 14806 |
This theorem is referenced by: s4eqd 14822 s3eq2 14827 s3sndisj 14920 s3iunsndisj 14921 ragcgr 28223 perpneq 28230 isperp2 28231 isperp2d 28232 footexALT 28234 footexlem2 28236 foot 28238 perprag 28242 perpdragALT 28243 colperpexlem1 28246 lmiisolem 28312 hypcgrlem1 28315 hypcgrlem2 28316 trgcopyeu 28322 iscgra 28325 iscgra1 28326 iscgrad 28327 sacgr 28347 isleag 28363 isleagd 28364 iseqlg 28383 |
Copyright terms: Public domain | W3C validator |