| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version | ||
| Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
| Ref | Expression |
|---|---|
| s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
| s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
| s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
| Ref | Expression |
|---|---|
| s3eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
| 2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
| 3 | 1, 2 | s2eqd 14829 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
| 4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
| 5 | 4 | s1eqd 14566 | . . 3 ⊢ (𝜑 → 〈“𝐶”〉 = 〈“𝑃”〉) |
| 6 | 3, 5 | oveq12d 7405 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉)) |
| 7 | df-s3 14815 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
| 8 | df-s3 14815 | . 2 ⊢ 〈“𝑁𝑂𝑃”〉 = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉) | |
| 9 | 6, 7, 8 | 3eqtr4g 2789 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 (class class class)co 7387 ++ cconcat 14535 〈“cs1 14560 〈“cs2 14807 〈“cs3 14808 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-s1 14561 df-s2 14814 df-s3 14815 |
| This theorem is referenced by: s4eqd 14831 s3eq2 14836 s3sndisj 14933 s3iunsndisj 14934 ragcgr 28634 perpneq 28641 isperp2 28642 isperp2d 28643 footexALT 28645 footexlem2 28647 foot 28649 perprag 28653 perpdragALT 28654 colperpexlem1 28657 lmiisolem 28723 hypcgrlem1 28726 hypcgrlem2 28727 trgcopyeu 28733 iscgra 28736 iscgra1 28737 iscgrad 28738 sacgr 28758 isleag 28774 isleagd 28775 iseqlg 28794 |
| Copyright terms: Public domain | W3C validator |