![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
Ref | Expression |
---|---|
s3eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | 1, 2 | s2eqd 13948 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
5 | 4 | s1eqd 13621 | . . 3 ⊢ (𝜑 → 〈“𝐶”〉 = 〈“𝑃”〉) |
6 | 3, 5 | oveq12d 6896 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉)) |
7 | df-s3 13934 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
8 | df-s3 13934 | . 2 ⊢ 〈“𝑁𝑂𝑃”〉 = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉) | |
9 | 6, 7, 8 | 3eqtr4g 2858 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 (class class class)co 6878 ++ cconcat 13590 〈“cs1 13615 〈“cs2 13926 〈“cs3 13927 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-rex 3095 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-iota 6064 df-fv 6109 df-ov 6881 df-s1 13616 df-s2 13933 df-s3 13934 |
This theorem is referenced by: s4eqd 13950 s3eq2 13955 s3sndisj 14049 s3iunsndisj 14050 tgcgrxfr 25769 ragcgr 25958 perpneq 25965 isperp2 25966 isperp2d 25967 footex 25969 foot 25970 perprag 25974 perpdragALT 25975 colperpexlem1 25978 lmiisolem 26044 hypcgrlem1 26047 hypcgrlem2 26048 trgcopyeu 26054 iscgra 26057 iscgra1 26058 iscgrad 26059 sacgr 26078 isleag 26089 iseqlg 26104 elwwlks2ons3OLD 27245 |
Copyright terms: Public domain | W3C validator |