![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
Ref | Expression |
---|---|
s3eqd | ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | 1, 2 | s2eqd 14810 | . . 3 ⊢ (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩) |
4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
5 | 4 | s1eqd 14547 | . . 3 ⊢ (𝜑 → ⟨“𝐶”⟩ = ⟨“𝑃”⟩) |
6 | 3, 5 | oveq12d 7423 | . 2 ⊢ (𝜑 → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩)) |
7 | df-s3 14796 | . 2 ⊢ ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) | |
8 | df-s3 14796 | . 2 ⊢ ⟨“𝑁𝑂𝑃”⟩ = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩) | |
9 | 6, 7, 8 | 3eqtr4g 2797 | 1 ⊢ (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 (class class class)co 7405 ++ cconcat 14516 ⟨“cs1 14541 ⟨“cs2 14788 ⟨“cs3 14789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-iota 6492 df-fv 6548 df-ov 7408 df-s1 14542 df-s2 14795 df-s3 14796 |
This theorem is referenced by: s4eqd 14812 s3eq2 14817 s3sndisj 14910 s3iunsndisj 14911 ragcgr 27947 perpneq 27954 isperp2 27955 isperp2d 27956 footexALT 27958 footexlem2 27960 foot 27962 perprag 27966 perpdragALT 27967 colperpexlem1 27970 lmiisolem 28036 hypcgrlem1 28039 hypcgrlem2 28040 trgcopyeu 28046 iscgra 28049 iscgra1 28050 iscgrad 28051 sacgr 28071 isleag 28087 isleagd 28088 iseqlg 28107 |
Copyright terms: Public domain | W3C validator |