MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  s3eqd Structured version   Visualization version   GIF version

Theorem s3eqd 14821
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.)
Hypotheses
Ref Expression
s2eqd.1 (𝜑𝐴 = 𝑁)
s2eqd.2 (𝜑𝐵 = 𝑂)
s3eqd.3 (𝜑𝐶 = 𝑃)
Assertion
Ref Expression
s3eqd (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)

Proof of Theorem s3eqd
StepHypRef Expression
1 s2eqd.1 . . . 4 (𝜑𝐴 = 𝑁)
2 s2eqd.2 . . . 4 (𝜑𝐵 = 𝑂)
31, 2s2eqd 14820 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩ = ⟨“𝑁𝑂”⟩)
4 s3eqd.3 . . . 4 (𝜑𝐶 = 𝑃)
54s1eqd 14557 . . 3 (𝜑 → ⟨“𝐶”⟩ = ⟨“𝑃”⟩)
63, 5oveq12d 7431 . 2 (𝜑 → (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩) = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩))
7 df-s3 14806 . 2 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
8 df-s3 14806 . 2 ⟨“𝑁𝑂𝑃”⟩ = (⟨“𝑁𝑂”⟩ ++ ⟨“𝑃”⟩)
96, 7, 83eqtr4g 2795 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝑁𝑂𝑃”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  (class class class)co 7413   ++ cconcat 14526  ⟨“cs1 14551  ⟨“cs2 14798  ⟨“cs3 14799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-iota 6496  df-fv 6552  df-ov 7416  df-s1 14552  df-s2 14805  df-s3 14806
This theorem is referenced by:  s4eqd  14822  s3eq2  14827  s3sndisj  14920  s3iunsndisj  14921  ragcgr  28223  perpneq  28230  isperp2  28231  isperp2d  28232  footexALT  28234  footexlem2  28236  foot  28238  perprag  28242  perpdragALT  28243  colperpexlem1  28246  lmiisolem  28312  hypcgrlem1  28315  hypcgrlem2  28316  trgcopyeu  28322  iscgra  28325  iscgra1  28326  iscgrad  28327  sacgr  28347  isleag  28363  isleagd  28364  iseqlg  28383
  Copyright terms: Public domain W3C validator