![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > s3eqd | Structured version Visualization version GIF version |
Description: Equality theorem for a length 3 word. (Contributed by Mario Carneiro, 27-Feb-2016.) |
Ref | Expression |
---|---|
s2eqd.1 | ⊢ (𝜑 → 𝐴 = 𝑁) |
s2eqd.2 | ⊢ (𝜑 → 𝐵 = 𝑂) |
s3eqd.3 | ⊢ (𝜑 → 𝐶 = 𝑃) |
Ref | Expression |
---|---|
s3eqd | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | s2eqd.1 | . . . 4 ⊢ (𝜑 → 𝐴 = 𝑁) | |
2 | s2eqd.2 | . . . 4 ⊢ (𝜑 → 𝐵 = 𝑂) | |
3 | 1, 2 | s2eqd 14899 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵”〉 = 〈“𝑁𝑂”〉) |
4 | s3eqd.3 | . . . 4 ⊢ (𝜑 → 𝐶 = 𝑃) | |
5 | 4 | s1eqd 14636 | . . 3 ⊢ (𝜑 → 〈“𝐶”〉 = 〈“𝑃”〉) |
6 | 3, 5 | oveq12d 7449 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉)) |
7 | df-s3 14885 | . 2 ⊢ 〈“𝐴𝐵𝐶”〉 = (〈“𝐴𝐵”〉 ++ 〈“𝐶”〉) | |
8 | df-s3 14885 | . 2 ⊢ 〈“𝑁𝑂𝑃”〉 = (〈“𝑁𝑂”〉 ++ 〈“𝑃”〉) | |
9 | 6, 7, 8 | 3eqtr4g 2800 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 = 〈“𝑁𝑂𝑃”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 (class class class)co 7431 ++ cconcat 14605 〈“cs1 14630 〈“cs2 14877 〈“cs3 14878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 df-ov 7434 df-s1 14631 df-s2 14884 df-s3 14885 |
This theorem is referenced by: s4eqd 14901 s3eq2 14906 s3sndisj 15003 s3iunsndisj 15004 ragcgr 28730 perpneq 28737 isperp2 28738 isperp2d 28739 footexALT 28741 footexlem2 28743 foot 28745 perprag 28749 perpdragALT 28750 colperpexlem1 28753 lmiisolem 28819 hypcgrlem1 28822 hypcgrlem2 28823 trgcopyeu 28829 iscgra 28832 iscgra1 28833 iscgrad 28834 sacgr 28854 isleag 28870 isleagd 28871 iseqlg 28890 |
Copyright terms: Public domain | W3C validator |