MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   GIF version

Theorem 2pthon3v 29925
Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
Hypotheses
Ref Expression
2pthon3v.v 𝑉 = (Vtx‘𝐺)
2pthon3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthon3v (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 2pthon3v
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthon3v.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
2 edgval 29028 . . . . . . . . . 10 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2758 . . . . . . . . 9 𝐸 = ran (iEdg‘𝐺)
43eleq2i 2826 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ ran (iEdg‘𝐺))
5 2pthon3v.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
6 eqid 2735 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
75, 6uhgrf 29041 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
87ffnd 6707 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
9 fvelrnb 6939 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
108, 9syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
114, 10bitrid 283 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
123eleq2i 2826 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ ran (iEdg‘𝐺))
13 fvelrnb 6939 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
148, 13syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1512, 14bitrid 283 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1611, 15anbi12d 632 . . . . . 6 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1716adantr 480 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1817adantr 480 . . . 4 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
19 reeanv 3213 . . . 4 (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
2018, 19bitr4di 289 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
21 df-s2 14867 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = (⟨“𝑖”⟩ ++ ⟨“𝑗”⟩)
2221ovexi 7439 . . . . . . 7 ⟨“𝑖𝑗”⟩ ∈ V
23 df-s3 14868 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2423ovexi 7439 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ ∈ V
2522, 24pm3.2i 470 . . . . . 6 (⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V)
26 eqid 2735 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
27 eqid 2735 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = ⟨“𝑖𝑗”⟩
28 simp-4r 783 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝑉𝐵𝑉𝐶𝑉))
29 3simpb 1149 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐵𝐶))
3029ad3antlr 731 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝐵𝐵𝐶))
31 eqimss2 4018 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
32 eqimss2 4018 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶} → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3331, 32anim12i 613 . . . . . . . . 9 ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
3433adantl 481 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
35 fveqeq2 6885 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵}))
3635anbi1d 631 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
37 eqtr2 2756 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})
38 3simpa 1148 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
39 3simpc 1150 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
40 preq12bg 4829 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝐵𝑉) ∧ (𝐵𝑉𝐶𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
42 eqneqall 2943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐵 → (𝐴𝐵𝑖𝑗))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵 → (𝐴 = 𝐵𝑖𝑗))
44433ad2ant1 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵𝑖𝑗))
4544com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐵 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
4645adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐵𝐵 = 𝐶) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
47 eqneqall 2943 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐶 → (𝐴𝐶𝑖𝑗))
4847com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐶 → (𝐴 = 𝐶𝑖𝑗))
49483ad2ant2 1134 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐶𝑖𝑗))
5049com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐶 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5150adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐶𝐵 = 𝐵) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5246, 51jaoi 857 . . . . . . . . . . . . . . . . . . 19 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5341, 52biimtrdi 253 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗)))
5453com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5554adantl 481 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5655imp 406 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗))
5756com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} = {𝐵, 𝐶} → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5837, 57syl 17 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5936, 58biimtrdi 253 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗)))
6059com23 86 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
61 2a1 28 . . . . . . . . . . 11 (𝑖𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
6260, 61pm2.61ine 3015 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6362adantr 480 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6463imp 406 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝑖𝑗)
65 simplr2 1217 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → 𝐴𝐶)
6665adantr 480 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝐴𝐶)
6726, 27, 28, 30, 34, 5, 6, 64, 662pthond 29924 . . . . . . 7 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩)
68 s2len 14908 . . . . . . 7 (♯‘⟨“𝑖𝑗”⟩) = 2
6967, 68jctir 520 . . . . . 6 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2))
70 breq12 5124 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ↔ ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩))
71 fveqeq2 6885 . . . . . . . . 9 (𝑓 = ⟨“𝑖𝑗”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7271adantr 480 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7370, 72anbi12d 632 . . . . . . 7 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2) ↔ (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2)))
7473spc2egv 3578 . . . . . 6 ((⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V) → ((⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7525, 69, 74mpsyl 68 . . . . 5 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
7675ex 412 . . . 4 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7776rexlimdvva 3198 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7820, 77sylbid 240 . 2 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
79783impia 1117 1 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2108  wne 2932  wrex 3060  Vcvv 3459  cdif 3923  wss 3926  c0 4308  𝒫 cpw 4575  {csn 4601  {cpr 4603   class class class wbr 5119  dom cdm 5654  ran crn 5655   Fn wfn 6526  cfv 6531  (class class class)co 7405  2c2 12295  chash 14348   ++ cconcat 14588  ⟨“cs1 14613  ⟨“cs2 14860  ⟨“cs3 14861  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  UHGraphcuhgr 29035  SPathsOncspthson 29695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-s2 14867  df-s3 14868  df-edg 29027  df-uhgr 29037  df-wlks 29579  df-wlkson 29580  df-trls 29672  df-trlson 29673  df-spths 29697  df-spthson 29699
This theorem is referenced by:  2pthfrgr  30265
  Copyright terms: Public domain W3C validator