MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   GIF version

Theorem 2pthon3v 27729
Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
Hypotheses
Ref Expression
2pthon3v.v 𝑉 = (Vtx‘𝐺)
2pthon3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthon3v (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 2pthon3v
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthon3v.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
2 edgval 26842 . . . . . . . . . 10 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2821 . . . . . . . . 9 𝐸 = ran (iEdg‘𝐺)
43eleq2i 2881 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ ran (iEdg‘𝐺))
5 2pthon3v.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
6 eqid 2798 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
75, 6uhgrf 26855 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
87ffnd 6488 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
9 fvelrnb 6701 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
108, 9syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
114, 10syl5bb 286 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
123eleq2i 2881 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ ran (iEdg‘𝐺))
13 fvelrnb 6701 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
148, 13syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1512, 14syl5bb 286 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1611, 15anbi12d 633 . . . . . 6 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1716adantr 484 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1817adantr 484 . . . 4 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
19 reeanv 3320 . . . 4 (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
2018, 19syl6bbr 292 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
21 df-s2 14201 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = (⟨“𝑖”⟩ ++ ⟨“𝑗”⟩)
2221ovexi 7169 . . . . . . 7 ⟨“𝑖𝑗”⟩ ∈ V
23 df-s3 14202 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2423ovexi 7169 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ ∈ V
2522, 24pm3.2i 474 . . . . . 6 (⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V)
26 eqid 2798 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
27 eqid 2798 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = ⟨“𝑖𝑗”⟩
28 simp-4r 783 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝑉𝐵𝑉𝐶𝑉))
29 3simpb 1146 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐵𝐶))
3029ad3antlr 730 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝐵𝐵𝐶))
31 eqimss2 3972 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
32 eqimss2 3972 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶} → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3331, 32anim12i 615 . . . . . . . . 9 ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
3433adantl 485 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
35 fveqeq2 6654 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵}))
3635anbi1d 632 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
37 eqtr2 2819 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})
38 3simpa 1145 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
39 3simpc 1147 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
40 preq12bg 4744 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝐵𝑉) ∧ (𝐵𝑉𝐶𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
4138, 39, 40syl2anc 587 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
42 eqneqall 2998 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐵 → (𝐴𝐵𝑖𝑗))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵 → (𝐴 = 𝐵𝑖𝑗))
44433ad2ant1 1130 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵𝑖𝑗))
4544com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐵 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
4645adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐵𝐵 = 𝐶) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
47 eqneqall 2998 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐶 → (𝐴𝐶𝑖𝑗))
4847com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐶 → (𝐴 = 𝐶𝑖𝑗))
49483ad2ant2 1131 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐶𝑖𝑗))
5049com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐶 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5150adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐶𝐵 = 𝐵) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5246, 51jaoi 854 . . . . . . . . . . . . . . . . . . 19 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5341, 52syl6bi 256 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗)))
5453com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5554adantl 485 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5655imp 410 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗))
5756com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} = {𝐵, 𝐶} → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5837, 57syl 17 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5936, 58syl6bi 256 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗)))
6059com23 86 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
61 2a1 28 . . . . . . . . . . 11 (𝑖𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
6260, 61pm2.61ine 3070 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6362adantr 484 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6463imp 410 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝑖𝑗)
65 simplr2 1213 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → 𝐴𝐶)
6665adantr 484 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝐴𝐶)
6726, 27, 28, 30, 34, 5, 6, 64, 662pthond 27728 . . . . . . 7 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩)
68 s2len 14242 . . . . . . 7 (♯‘⟨“𝑖𝑗”⟩) = 2
6967, 68jctir 524 . . . . . 6 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2))
70 breq12 5035 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ↔ ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩))
71 fveqeq2 6654 . . . . . . . . 9 (𝑓 = ⟨“𝑖𝑗”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7271adantr 484 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7370, 72anbi12d 633 . . . . . . 7 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2) ↔ (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2)))
7473spc2egv 3548 . . . . . 6 ((⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V) → ((⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7525, 69, 74mpsyl 68 . . . . 5 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
7675ex 416 . . . 4 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7776rexlimdvva 3253 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7820, 77sylbid 243 . 2 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
79783impia 1114 1 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wrex 3107  Vcvv 3441  cdif 3878  wss 3881  c0 4243  𝒫 cpw 4497  {csn 4525  {cpr 4527   class class class wbr 5030  dom cdm 5519  ran crn 5520   Fn wfn 6319  cfv 6324  (class class class)co 7135  2c2 11680  chash 13686   ++ cconcat 13913  ⟨“cs1 13940  ⟨“cs2 14194  ⟨“cs3 14195  Vtxcvtx 26789  iEdgciedg 26790  Edgcedg 26840  UHGraphcuhgr 26849  SPathsOncspthson 27504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-edg 26841  df-uhgr 26851  df-wlks 27389  df-wlkson 27390  df-trls 27482  df-trlson 27483  df-pths 27505  df-spths 27506  df-spthson 27508
This theorem is referenced by:  2pthfrgr  28069
  Copyright terms: Public domain W3C validator