MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pthon3v Structured version   Visualization version   GIF version

Theorem 2pthon3v 28308
Description: For a vertex adjacent to two other vertices there is a simple path of length 2 between these other vertices in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017.) (Revised by AV, 24-Jan-2021.)
Hypotheses
Ref Expression
2pthon3v.v 𝑉 = (Vtx‘𝐺)
2pthon3v.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
2pthon3v (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem 2pthon3v
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2pthon3v.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
2 edgval 27419 . . . . . . . . . 10 (Edg‘𝐺) = ran (iEdg‘𝐺)
31, 2eqtri 2766 . . . . . . . . 9 𝐸 = ran (iEdg‘𝐺)
43eleq2i 2830 . . . . . . . 8 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ ran (iEdg‘𝐺))
5 2pthon3v.v . . . . . . . . . . 11 𝑉 = (Vtx‘𝐺)
6 eqid 2738 . . . . . . . . . . 11 (iEdg‘𝐺) = (iEdg‘𝐺)
75, 6uhgrf 27432 . . . . . . . . . 10 (𝐺 ∈ UHGraph → (iEdg‘𝐺):dom (iEdg‘𝐺)⟶(𝒫 𝑉 ∖ {∅}))
87ffnd 6601 . . . . . . . . 9 (𝐺 ∈ UHGraph → (iEdg‘𝐺) Fn dom (iEdg‘𝐺))
9 fvelrnb 6830 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
108, 9syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ ran (iEdg‘𝐺) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
114, 10syl5bb 283 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐴, 𝐵} ∈ 𝐸 ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵}))
123eleq2i 2830 . . . . . . . 8 ({𝐵, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ ran (iEdg‘𝐺))
13 fvelrnb 6830 . . . . . . . . 9 ((iEdg‘𝐺) Fn dom (iEdg‘𝐺) → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
148, 13syl 17 . . . . . . . 8 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ ran (iEdg‘𝐺) ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1512, 14syl5bb 283 . . . . . . 7 (𝐺 ∈ UHGraph → ({𝐵, 𝐶} ∈ 𝐸 ↔ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
1611, 15anbi12d 631 . . . . . 6 (𝐺 ∈ UHGraph → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1716adantr 481 . . . . 5 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
1817adantr 481 . . . 4 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
19 reeanv 3294 . . . 4 (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (∃𝑖 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ∃𝑗 ∈ dom (iEdg‘𝐺)((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}))
2018, 19bitr4di 289 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) ↔ ∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
21 df-s2 14561 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = (⟨“𝑖”⟩ ++ ⟨“𝑗”⟩)
2221ovexi 7309 . . . . . . 7 ⟨“𝑖𝑗”⟩ ∈ V
23 df-s3 14562 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = (⟨“𝐴𝐵”⟩ ++ ⟨“𝐶”⟩)
2423ovexi 7309 . . . . . . 7 ⟨“𝐴𝐵𝐶”⟩ ∈ V
2522, 24pm3.2i 471 . . . . . 6 (⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V)
26 eqid 2738 . . . . . . . 8 ⟨“𝐴𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩
27 eqid 2738 . . . . . . . 8 ⟨“𝑖𝑗”⟩ = ⟨“𝑖𝑗”⟩
28 simp-4r 781 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝑉𝐵𝑉𝐶𝑉))
29 3simpb 1148 . . . . . . . . 9 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴𝐵𝐵𝐶))
3029ad3antlr 728 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (𝐴𝐵𝐵𝐶))
31 eqimss2 3978 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} → {𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖))
32 eqimss2 3978 . . . . . . . . . 10 (((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶} → {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗))
3331, 32anim12i 613 . . . . . . . . 9 ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
3433adantl 482 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ({𝐴, 𝐵} ⊆ ((iEdg‘𝐺)‘𝑖) ∧ {𝐵, 𝐶} ⊆ ((iEdg‘𝐺)‘𝑗)))
35 fveqeq2 6783 . . . . . . . . . . . . . 14 (𝑖 = 𝑗 → (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ↔ ((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵}))
3635anbi1d 630 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) ↔ (((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})))
37 eqtr2 2762 . . . . . . . . . . . . . 14 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → {𝐴, 𝐵} = {𝐵, 𝐶})
38 3simpa 1147 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐴𝑉𝐵𝑉))
39 3simpc 1149 . . . . . . . . . . . . . . . . . . . 20 ((𝐴𝑉𝐵𝑉𝐶𝑉) → (𝐵𝑉𝐶𝑉))
40 preq12bg 4784 . . . . . . . . . . . . . . . . . . . 20 (((𝐴𝑉𝐵𝑉) ∧ (𝐵𝑉𝐶𝑉)) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
4138, 39, 40syl2anc 584 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} ↔ ((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵))))
42 eqneqall 2954 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐵 → (𝐴𝐵𝑖𝑗))
4342com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐵 → (𝐴 = 𝐵𝑖𝑗))
44433ad2ant1 1132 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵𝑖𝑗))
4544com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐵 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
4645adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐵𝐵 = 𝐶) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
47 eqneqall 2954 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 = 𝐶 → (𝐴𝐶𝑖𝑗))
4847com12 32 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐴𝐶 → (𝐴 = 𝐶𝑖𝑗))
49483ad2ant2 1133 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝐴 = 𝐶𝑖𝑗))
5049com12 32 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝐶 → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5150adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 = 𝐶𝐵 = 𝐵) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5246, 51jaoi 854 . . . . . . . . . . . . . . . . . . 19 (((𝐴 = 𝐵𝐵 = 𝐶) ∨ (𝐴 = 𝐶𝐵 = 𝐵)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗))
5341, 52syl6bi 252 . . . . . . . . . . . . . . . . . 18 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ({𝐴, 𝐵} = {𝐵, 𝐶} → ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝑖𝑗)))
5453com23 86 . . . . . . . . . . . . . . . . 17 ((𝐴𝑉𝐵𝑉𝐶𝑉) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5554adantl 482 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗)))
5655imp 407 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ({𝐴, 𝐵} = {𝐵, 𝐶} → 𝑖𝑗))
5756com12 32 . . . . . . . . . . . . . 14 ({𝐴, 𝐵} = {𝐵, 𝐶} → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5837, 57syl 17 . . . . . . . . . . . . 13 ((((iEdg‘𝐺)‘𝑗) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗))
5936, 58syl6bi 252 . . . . . . . . . . . 12 (𝑖 = 𝑗 → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → 𝑖𝑗)))
6059com23 86 . . . . . . . . . . 11 (𝑖 = 𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
61 2a1 28 . . . . . . . . . . 11 (𝑖𝑗 → (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗)))
6260, 61pm2.61ine 3028 . . . . . . . . . 10 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6362adantr 481 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → 𝑖𝑗))
6463imp 407 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝑖𝑗)
65 simplr2 1215 . . . . . . . . 9 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → 𝐴𝐶)
6665adantr 481 . . . . . . . 8 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → 𝐴𝐶)
6726, 27, 28, 30, 34, 5, 6, 64, 662pthond 28307 . . . . . . 7 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩)
68 s2len 14602 . . . . . . 7 (♯‘⟨“𝑖𝑗”⟩) = 2
6967, 68jctir 521 . . . . . 6 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2))
70 breq12 5079 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → (𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ↔ ⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩))
71 fveqeq2 6783 . . . . . . . . 9 (𝑓 = ⟨“𝑖𝑗”⟩ → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7271adantr 481 . . . . . . . 8 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((♯‘𝑓) = 2 ↔ (♯‘⟨“𝑖𝑗”⟩) = 2))
7370, 72anbi12d 631 . . . . . . 7 ((𝑓 = ⟨“𝑖𝑗”⟩ ∧ 𝑝 = ⟨“𝐴𝐵𝐶”⟩) → ((𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2) ↔ (⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2)))
7473spc2egv 3538 . . . . . 6 ((⟨“𝑖𝑗”⟩ ∈ V ∧ ⟨“𝐴𝐵𝐶”⟩ ∈ V) → ((⟨“𝑖𝑗”⟩(𝐴(SPathsOn‘𝐺)𝐶)⟨“𝐴𝐵𝐶”⟩ ∧ (♯‘⟨“𝑖𝑗”⟩) = 2) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7525, 69, 74mpsyl 68 . . . . 5 (((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) ∧ (((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶})) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
7675ex 413 . . . 4 ((((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ (𝑖 ∈ dom (iEdg‘𝐺) ∧ 𝑗 ∈ dom (iEdg‘𝐺))) → ((((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7776rexlimdvva 3223 . . 3 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (∃𝑖 ∈ dom (iEdg‘𝐺)∃𝑗 ∈ dom (iEdg‘𝐺)(((iEdg‘𝐺)‘𝑖) = {𝐴, 𝐵} ∧ ((iEdg‘𝐺)‘𝑗) = {𝐵, 𝐶}) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
7820, 77sylbid 239 . 2 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2)))
79783impia 1116 1 (((𝐺 ∈ UHGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉)) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(𝐴(SPathsOn‘𝐺)𝐶)𝑝 ∧ (♯‘𝑓) = 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cdif 3884  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561  {cpr 4563   class class class wbr 5074  dom cdm 5589  ran crn 5590   Fn wfn 6428  cfv 6433  (class class class)co 7275  2c2 12028  chash 14044   ++ cconcat 14273  ⟨“cs1 14300  ⟨“cs2 14554  ⟨“cs3 14555  Vtxcvtx 27366  iEdgciedg 27367  Edgcedg 27417  UHGraphcuhgr 27426  SPathsOncspthson 28083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-concat 14274  df-s1 14301  df-s2 14561  df-s3 14562  df-edg 27418  df-uhgr 27428  df-wlks 27966  df-wlkson 27967  df-trls 28060  df-trlson 28061  df-spths 28085  df-spthson 28087
This theorem is referenced by:  2pthfrgr  28648
  Copyright terms: Public domain W3C validator