Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2rnfveq Structured version   Visualization version   GIF version

Theorem afv2rnfveq 47372
Description: If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2rnfveq ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem afv2rnfveq
StepHypRef Expression
1 dfatafv2rnb 47337 . 2 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
2 dfatafv2eqfv 47371 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
31, 2sylbir 235 1 ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  ran crn 5615  cfv 6481   defAt wdfat 47226  ''''cafv2 47318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-dfat 47229  df-afv2 47319
This theorem is referenced by:  afv2fv0  47375
  Copyright terms: Public domain W3C validator