Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2rnfveq Structured version   Visualization version   GIF version

Theorem afv2rnfveq 42303
 Description: If the alternate function value is defined, i.e., in the range of the function, the alternate function value equals the function's value. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2rnfveq ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem afv2rnfveq
StepHypRef Expression
1 dfatafv2rnb 42268 . 2 (𝐹 defAt 𝐴 ↔ (𝐹''''𝐴) ∈ ran 𝐹)
2 dfatafv2eqfv 42302 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
31, 2sylbir 227 1 ((𝐹''''𝐴) ∈ ran 𝐹 → (𝐹''''𝐴) = (𝐹𝐴))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1601   ∈ wcel 2107  ran crn 5356  ‘cfv 6135   defAt wdfat 42157  ''''cafv2 42249 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138  ax-un 7226 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-nel 3076  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-iota 6099  df-fun 6137  df-fv 6143  df-dfat 42160  df-afv2 42250 This theorem is referenced by:  afv2fv0  42306
 Copyright terms: Public domain W3C validator