| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20fv0 | Structured version Visualization version GIF version | ||
| Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
| Ref | Expression |
|---|---|
| afv20fv0 | ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | afv20defat 47237 | . 2 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) | |
| 2 | dfatafv2eqfv 47266 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
| 3 | 2 | eqcomd 2736 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹''''𝐴)) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = (𝐹''''𝐴)) |
| 5 | simpr 484 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹''''𝐴) = ∅) | |
| 6 | 4, 5 | eqtrd 2765 | . 2 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = ∅) |
| 7 | 1, 6 | mpancom 688 | 1 ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∅c0 4299 ‘cfv 6514 defAt wdfat 47121 ''''cafv2 47213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5264 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-fv 6522 df-afv2 47214 |
| This theorem is referenced by: afv2fv0b 47271 |
| Copyright terms: Public domain | W3C validator |