![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20fv0 | Structured version Visualization version GIF version |
Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv20fv0 | ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv20defat 45538 | . 2 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) | |
2 | dfatafv2eqfv 45567 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
3 | 2 | eqcomd 2743 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹''''𝐴)) |
4 | 3 | adantr 482 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = (𝐹''''𝐴)) |
5 | simpr 486 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹''''𝐴) = ∅) | |
6 | 4, 5 | eqtrd 2777 | . 2 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = ∅) |
7 | 1, 6 | mpancom 687 | 1 ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∅c0 4287 ‘cfv 6501 defAt wdfat 45422 ''''cafv2 45514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-nul 5268 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-rab 3411 df-v 3450 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-fv 6509 df-afv2 45515 |
This theorem is referenced by: afv2fv0b 45572 |
Copyright terms: Public domain | W3C validator |