Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv20fv0 Structured version   Visualization version   GIF version

Theorem afv20fv0 47275
Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv20fv0 ((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)

Proof of Theorem afv20fv0
StepHypRef Expression
1 afv20defat 47244 . 2 ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴)
2 dfatafv2eqfv 47273 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
32eqcomd 2743 . . . 4 (𝐹 defAt 𝐴 → (𝐹𝐴) = (𝐹''''𝐴))
43adantr 480 . . 3 ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹𝐴) = (𝐹''''𝐴))
5 simpr 484 . . 3 ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹''''𝐴) = ∅)
64, 5eqtrd 2777 . 2 ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹𝐴) = ∅)
71, 6mpancom 688 1 ((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  c0 4333  cfv 6561   defAt wdfat 47128  ''''cafv2 47220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-fv 6569  df-afv2 47221
This theorem is referenced by:  afv2fv0b  47278
  Copyright terms: Public domain W3C validator