Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv20fv0 Structured version   Visualization version   GIF version

Theorem afv20fv0 44642
Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv20fv0 ((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)

Proof of Theorem afv20fv0
StepHypRef Expression
1 afv20defat 44611 . 2 ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴)
2 dfatafv2eqfv 44640 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
32eqcomd 2744 . . . 4 (𝐹 defAt 𝐴 → (𝐹𝐴) = (𝐹''''𝐴))
43adantr 480 . . 3 ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹𝐴) = (𝐹''''𝐴))
5 simpr 484 . . 3 ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹''''𝐴) = ∅)
64, 5eqtrd 2778 . 2 ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹𝐴) = ∅)
71, 6mpancom 684 1 ((𝐹''''𝐴) = ∅ → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  c0 4253  cfv 6418   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-nul 5225
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-fv 6426  df-afv2 44588
This theorem is referenced by:  afv2fv0b  44645
  Copyright terms: Public domain W3C validator