Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20fv0 | Structured version Visualization version GIF version |
Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv20fv0 | ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv20defat 44724 | . 2 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) | |
2 | dfatafv2eqfv 44753 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
3 | 2 | eqcomd 2744 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹''''𝐴)) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = (𝐹''''𝐴)) |
5 | simpr 485 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹''''𝐴) = ∅) | |
6 | 4, 5 | eqtrd 2778 | . 2 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = ∅) |
7 | 1, 6 | mpancom 685 | 1 ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∅c0 4256 ‘cfv 6433 defAt wdfat 44608 ''''cafv2 44700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-nul 5230 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-fv 6441 df-afv2 44701 |
This theorem is referenced by: afv2fv0b 44758 |
Copyright terms: Public domain | W3C validator |