![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv20fv0 | Structured version Visualization version GIF version |
Description: If the alternate function value at an argument is the empty set, the function's value at this argument is the empty set. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv20fv0 | ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | afv20defat 47147 | . 2 ⊢ ((𝐹''''𝐴) = ∅ → 𝐹 defAt 𝐴) | |
2 | dfatafv2eqfv 47176 | . . . . 5 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
3 | 2 | eqcomd 2746 | . . . 4 ⊢ (𝐹 defAt 𝐴 → (𝐹‘𝐴) = (𝐹''''𝐴)) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = (𝐹''''𝐴)) |
5 | simpr 484 | . . 3 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹''''𝐴) = ∅) | |
6 | 4, 5 | eqtrd 2780 | . 2 ⊢ ((𝐹 defAt 𝐴 ∧ (𝐹''''𝐴) = ∅) → (𝐹‘𝐴) = ∅) |
7 | 1, 6 | mpancom 687 | 1 ⊢ ((𝐹''''𝐴) = ∅ → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∅c0 4352 ‘cfv 6573 defAt wdfat 47031 ''''cafv2 47123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-fv 6581 df-afv2 47124 |
This theorem is referenced by: afv2fv0b 47181 |
Copyright terms: Public domain | W3C validator |