Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fvn0fveq Structured version   Visualization version   GIF version

Theorem afv2fvn0fveq 47262
Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fvn0fveq ((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem afv2fvn0fveq
StepHypRef Expression
1 fvfundmfvn0 6901 . . 3 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 df-dfat 47117 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
31, 2sylibr 234 . 2 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
4 dfatafv2eqfv 47259 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
53, 4syl 17 1 ((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  c0 4296  {csn 4589  dom cdm 5638  cres 5640  Fun wfun 6505  cfv 6511   defAt wdfat 47114  ''''cafv2 47206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-res 5650  df-iota 6464  df-fun 6513  df-fv 6519  df-dfat 47117  df-afv2 47207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator