![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > afv2fvn0fveq | Structured version Visualization version GIF version |
Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.) |
Ref | Expression |
---|---|
afv2fvn0fveq | ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvfundmfvn0 6931 | . . 3 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
2 | df-dfat 45813 | . . 3 ⊢ (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | |
3 | 1, 2 | sylibr 233 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐹 defAt 𝐴) |
4 | dfatafv2eqfv 45955 | . 2 ⊢ (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹‘𝐴)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 {csn 4627 dom cdm 5675 ↾ cres 5677 Fun wfun 6534 ‘cfv 6540 defAt wdfat 45810 ''''cafv2 45902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-res 5687 df-iota 6492 df-fun 6542 df-fv 6548 df-dfat 45813 df-afv2 45903 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |