Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fvn0fveq Structured version   Visualization version   GIF version

Theorem afv2fvn0fveq 47179
Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fvn0fveq ((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem afv2fvn0fveq
StepHypRef Expression
1 fvfundmfvn0 6963 . . 3 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 df-dfat 47034 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
31, 2sylibr 234 . 2 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
4 dfatafv2eqfv 47176 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
53, 4syl 17 1 ((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352  {csn 4648  dom cdm 5700  cres 5702  Fun wfun 6567  cfv 6573   defAt wdfat 47031  ''''cafv2 47123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-iota 6525  df-fun 6575  df-fv 6581  df-dfat 47034  df-afv2 47124
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator