Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  afv2fvn0fveq Structured version   Visualization version   GIF version

Theorem afv2fvn0fveq 44643
Description: If the function's value at an argument is not the empty set, it equals the alternate function value at this argument. (Contributed by AV, 3-Sep-2022.)
Assertion
Ref Expression
afv2fvn0fveq ((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))

Proof of Theorem afv2fvn0fveq
StepHypRef Expression
1 fvfundmfvn0 6794 . . 3 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2 df-dfat 44498 . . 3 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
31, 2sylibr 233 . 2 ((𝐹𝐴) ≠ ∅ → 𝐹 defAt 𝐴)
4 dfatafv2eqfv 44640 . 2 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (𝐹𝐴))
53, 4syl 17 1 ((𝐹𝐴) ≠ ∅ → (𝐹''''𝐴) = (𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  c0 4253  {csn 4558  dom cdm 5580  cres 5582  Fun wfun 6412  cfv 6418   defAt wdfat 44495  ''''cafv2 44587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-res 5592  df-iota 6376  df-fun 6420  df-fv 6426  df-dfat 44498  df-afv2 44588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator