MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr2ALT Structured version   Visualization version   GIF version

Theorem dffr2ALT 5646
Description: Alternate proof of dffr2 5645, which avoids ax-8 2109 but requires ax-10 2140, ax-11 2156, ax-12 2176. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dffr2ALT (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧

Proof of Theorem dffr2ALT
StepHypRef Expression
1 df-fr 5636 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
2 rabeq0 4387 . . . . 5 ({𝑧𝑥𝑧𝑅𝑦} = ∅ ↔ ∀𝑧𝑥 ¬ 𝑧𝑅𝑦)
32rexbii 3093 . . . 4 (∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅ ↔ ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦)
43imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
54albii 1818 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑧𝑥 ¬ 𝑧𝑅𝑦))
61, 5bitr4i 278 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1537   = wceq 1539  wne 2939  wral 3060  wrex 3069  {crab 3435  wss 3950  c0 4332   class class class wbr 5142   Fr wfr 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-ral 3061  df-rex 3070  df-rab 3436  df-dif 3953  df-nul 4333  df-fr 5636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator