MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frc Structured version   Visualization version   GIF version

Theorem frc 5369
Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.)
Hypothesis
Ref Expression
frc.1 𝐵 ∈ V
Assertion
Ref Expression
frc ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝑅,𝑦

Proof of Theorem frc
StepHypRef Expression
1 frc.1 . . . 4 𝐵 ∈ V
2 fri 5365 . . . 4 (((𝐵 ∈ V ∧ 𝑅 Fr 𝐴) ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
31, 2mpanl1 688 . . 3 ((𝑅 Fr 𝐴 ∧ (𝐵𝐴𝐵 ≠ ∅)) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
433impb 1096 . 2 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
5 rabeq0 4218 . . 3 ({𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)
65rexbii 3187 . 2 (∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅ ↔ ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
74, 6sylibr 226 1 ((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵 {𝑦𝐵𝑦𝑅𝑥} = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2960  wral 3081  wrex 3082  {crab 3085  Vcvv 3408  wss 3822  c0 4172   class class class wbr 4925   Fr wfr 5359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-ext 2743
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-dif 3825  df-in 3829  df-ss 3836  df-nul 4173  df-fr 5362
This theorem is referenced by:  frirr  5380  epfrc  5389
  Copyright terms: Public domain W3C validator