| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frc | Structured version Visualization version GIF version | ||
| Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| frc.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| frc | ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frc.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | fri 5569 | . . . 4 ⊢ (((𝐵 ∈ V ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) | |
| 3 | 1, 2 | mpanl1 700 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 4 | 3 | 3impb 1114 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 5 | breq1 5089 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑧𝑅𝑥)) | |
| 6 | 5 | rabeq0w 4332 | . . 3 ⊢ ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 7 | 6 | rexbii 3079 | . 2 ⊢ (∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 8 | 4, 7 | sylibr 234 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4278 class class class wbr 5086 Fr wfr 5561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-fr 5564 |
| This theorem is referenced by: frirr 5587 epfrc 5596 |
| Copyright terms: Public domain | W3C validator |