![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frc | Structured version Visualization version GIF version |
Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.) |
Ref | Expression |
---|---|
frc.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
frc | ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frc.1 | . . . 4 ⊢ 𝐵 ∈ V | |
2 | fri 5626 | . . . 4 ⊢ (((𝐵 ∈ V ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) | |
3 | 1, 2 | mpanl1 697 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
4 | 3 | 3impb 1112 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
5 | breq1 5141 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑧𝑅𝑥)) | |
6 | 5 | rabeq0w 4375 | . . 3 ⊢ ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
7 | 6 | rexbii 3086 | . 2 ⊢ (∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
8 | 4, 7 | sylibr 233 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 {crab 3424 Vcvv 3466 ⊆ wss 3940 ∅c0 4314 class class class wbr 5138 Fr wfr 5618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-fr 5621 |
This theorem is referenced by: frirr 5643 epfrc 5652 |
Copyright terms: Public domain | W3C validator |