| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frc | Structured version Visualization version GIF version | ||
| Description: Property of well-founded relation (one direction of definition using class variables). (Contributed by NM, 17-Feb-2004.) (Revised by Mario Carneiro, 19-Nov-2014.) |
| Ref | Expression |
|---|---|
| frc.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| frc | ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frc.1 | . . . 4 ⊢ 𝐵 ∈ V | |
| 2 | fri 5642 | . . . 4 ⊢ (((𝐵 ∈ V ∧ 𝑅 Fr 𝐴) ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) | |
| 3 | 1, 2 | mpanl1 700 | . . 3 ⊢ ((𝑅 Fr 𝐴 ∧ (𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅)) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 4 | 3 | 3impb 1115 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 5 | breq1 5146 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦𝑅𝑥 ↔ 𝑧𝑅𝑥)) | |
| 6 | 5 | rabeq0w 4387 | . . 3 ⊢ ({𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 7 | 6 | rexbii 3094 | . 2 ⊢ (∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅ ↔ ∃𝑥 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ¬ 𝑧𝑅𝑥) |
| 8 | 4, 7 | sylibr 234 | 1 ⊢ ((𝑅 Fr 𝐴 ∧ 𝐵 ⊆ 𝐴 ∧ 𝐵 ≠ ∅) → ∃𝑥 ∈ 𝐵 {𝑦 ∈ 𝐵 ∣ 𝑦𝑅𝑥} = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3436 Vcvv 3480 ⊆ wss 3951 ∅c0 4333 class class class wbr 5143 Fr wfr 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-fr 5637 |
| This theorem is referenced by: frirr 5661 epfrc 5670 |
| Copyright terms: Public domain | W3C validator |