MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr2 Structured version   Visualization version   GIF version

Theorem dffr2 5572
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) Avoid ax-10 2144, ax-11 2160, ax-12 2180, but use ax-8 2113. (Revised by GG, 3-Oct-2024.)
Assertion
Ref Expression
dffr2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧

Proof of Theorem dffr2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-fr 5564 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦))
2 breq1 5089 . . . . . 6 (𝑧 = 𝑤 → (𝑧𝑅𝑦𝑤𝑅𝑦))
32rabeq0w 4332 . . . . 5 ({𝑧𝑥𝑧𝑅𝑦} = ∅ ↔ ∀𝑤𝑥 ¬ 𝑤𝑅𝑦)
43rexbii 3079 . . . 4 (∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅ ↔ ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦)
54imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦))
65albii 1820 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦))
71, 6bitr4i 278 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4278   class class class wbr 5086   Fr wfr 5561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-fr 5564
This theorem is referenced by:  fr0  5589  dfepfr  5595  dffr3  6043
  Copyright terms: Public domain W3C validator