| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dffr2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) Avoid ax-10 2144, ax-11 2160, ax-12 2180, but use ax-8 2113. (Revised by GG, 3-Oct-2024.) |
| Ref | Expression |
|---|---|
| dffr2 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fr 5564 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦)) | |
| 2 | breq1 5089 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑤𝑅𝑦)) | |
| 3 | 2 | rabeq0w 4332 | . . . . 5 ⊢ ({𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ ↔ ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦) |
| 4 | 3 | rexbii 3079 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ ↔ ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦) |
| 5 | 4 | imbi2i 336 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦)) |
| 6 | 5 | albii 1820 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦)) |
| 7 | 1, 6 | bitr4i 278 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∅c0 4278 class class class wbr 5086 Fr wfr 5561 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-fr 5564 |
| This theorem is referenced by: fr0 5589 dfepfr 5595 dffr3 6043 |
| Copyright terms: Public domain | W3C validator |