MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dffr2 Structured version   Visualization version   GIF version

Theorem dffr2 5598
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) Avoid ax-10 2138, ax-11 2155, ax-12 2172, but use ax-8 2109. (Revised by Gino Giotto, 3-Oct-2024.)
Assertion
Ref Expression
dffr2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝑅,𝑦,𝑧

Proof of Theorem dffr2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 df-fr 5589 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦))
2 breq1 5109 . . . . . 6 (𝑧 = 𝑤 → (𝑧𝑅𝑦𝑤𝑅𝑦))
32rabeq0w 4344 . . . . 5 ({𝑧𝑥𝑧𝑅𝑦} = ∅ ↔ ∀𝑤𝑥 ¬ 𝑤𝑅𝑦)
43rexbii 3098 . . . 4 (∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅ ↔ ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦)
54imbi2i 336 . . 3 (((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅) ↔ ((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦))
65albii 1822 . 2 (∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅) ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥𝑤𝑥 ¬ 𝑤𝑅𝑦))
71, 6bitr4i 278 1 (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 {𝑧𝑥𝑧𝑅𝑦} = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wne 2944  wral 3065  wrex 3074  {crab 3408  wss 3911  c0 4283   class class class wbr 5106   Fr wfr 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-fr 5589
This theorem is referenced by:  fr0  5613  dfepfr  5619  dffr3  6052
  Copyright terms: Public domain W3C validator