Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dffr2 | Structured version Visualization version GIF version |
Description: Alternate definition of well-founded relation. Similar to Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 17-Feb-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Mario Carneiro, 23-Jun-2015.) Avoid ax-10 2139, ax-11 2156, ax-12 2173, but use ax-8 2110. (Revised by Gino Giotto, 3-Oct-2024.) |
Ref | Expression |
---|---|
dffr2 | ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fr 5535 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦)) | |
2 | breq1 5073 | . . . . . 6 ⊢ (𝑧 = 𝑤 → (𝑧𝑅𝑦 ↔ 𝑤𝑅𝑦)) | |
3 | 2 | rabeq0w 4314 | . . . . 5 ⊢ ({𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ ↔ ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦) |
4 | 3 | rexbii 3177 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅ ↔ ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦) |
5 | 4 | imbi2i 335 | . . 3 ⊢ (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦)) |
6 | 5 | albii 1823 | . 2 ⊢ (∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅) ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 ∀𝑤 ∈ 𝑥 ¬ 𝑤𝑅𝑦)) |
7 | 1, 6 | bitr4i 277 | 1 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 {𝑧 ∈ 𝑥 ∣ 𝑧𝑅𝑦} = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 = wceq 1539 ≠ wne 2942 ∀wral 3063 ∃wrex 3064 {crab 3067 ⊆ wss 3883 ∅c0 4253 class class class wbr 5070 Fr wfr 5532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-fr 5535 |
This theorem is referenced by: fr0 5559 dfepfr 5565 dffr3 5996 |
Copyright terms: Public domain | W3C validator |