![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfint3 | Structured version Visualization version GIF version |
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
Ref | Expression |
---|---|
dfint3 | ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4951 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
2 | ralnex 3070 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡(V ∖ E )𝑥 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑦◡(V ∖ E )𝑥) | |
3 | vex 3476 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | vex 3476 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 5881 | . . . . . . . 8 ⊢ (𝑦◡(V ∖ E )𝑥 ↔ 𝑥(V ∖ E )𝑦) |
6 | brv 5471 | . . . . . . . . 9 ⊢ 𝑥V𝑦 | |
7 | brdif 5200 | . . . . . . . . 9 ⊢ (𝑥(V ∖ E )𝑦 ↔ (𝑥V𝑦 ∧ ¬ 𝑥 E 𝑦)) | |
8 | 6, 7 | mpbiran 705 | . . . . . . . 8 ⊢ (𝑥(V ∖ E )𝑦 ↔ ¬ 𝑥 E 𝑦) |
9 | 5, 8 | bitr2i 275 | . . . . . . 7 ⊢ (¬ 𝑥 E 𝑦 ↔ 𝑦◡(V ∖ E )𝑥) |
10 | 9 | con1bii 355 | . . . . . 6 ⊢ (¬ 𝑦◡(V ∖ E )𝑥 ↔ 𝑥 E 𝑦) |
11 | epel 5582 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
12 | 10, 11 | bitr2i 275 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 ↔ ¬ 𝑦◡(V ∖ E )𝑥) |
13 | 12 | ralbii 3091 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡(V ∖ E )𝑥) |
14 | eldif 3957 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (◡(V ∖ E ) “ 𝐴))) | |
15 | 4, 14 | mpbiran 705 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ ¬ 𝑥 ∈ (◡(V ∖ E ) “ 𝐴)) |
16 | 4 | elima 6063 | . . . . 5 ⊢ (𝑥 ∈ (◡(V ∖ E ) “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦◡(V ∖ E )𝑥) |
17 | 15, 16 | xchbinx 333 | . . . 4 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ ¬ ∃𝑦 ∈ 𝐴 𝑦◡(V ∖ E )𝑥) |
18 | 2, 13, 17 | 3bitr4ri 303 | . . 3 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
19 | 18 | eqabi 2867 | . 2 ⊢ (V ∖ (◡(V ∖ E ) “ 𝐴)) = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
20 | 1, 19 | eqtr4i 2761 | 1 ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2104 {cab 2707 ∀wral 3059 ∃wrex 3068 Vcvv 3472 ∖ cdif 3944 ∩ cint 4949 class class class wbr 5147 E cep 5578 ◡ccnv 5674 “ cima 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-int 4950 df-br 5148 df-opab 5210 df-eprel 5579 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |