Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfint3 Structured version   Visualization version   GIF version

Theorem dfint3 35940
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
dfint3 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))

Proof of Theorem dfint3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4912 . 2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
2 ralnex 3055 . . . 4 (∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥 ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
3 vex 3451 . . . . . . . . 9 𝑦 ∈ V
4 vex 3451 . . . . . . . . 9 𝑥 ∈ V
53, 4brcnv 5846 . . . . . . . 8 (𝑦(V ∖ E )𝑥𝑥(V ∖ E )𝑦)
6 brv 5432 . . . . . . . . 9 𝑥V𝑦
7 brdif 5160 . . . . . . . . 9 (𝑥(V ∖ E )𝑦 ↔ (𝑥V𝑦 ∧ ¬ 𝑥 E 𝑦))
86, 7mpbiran 709 . . . . . . . 8 (𝑥(V ∖ E )𝑦 ↔ ¬ 𝑥 E 𝑦)
95, 8bitr2i 276 . . . . . . 7 𝑥 E 𝑦𝑦(V ∖ E )𝑥)
109con1bii 356 . . . . . 6 𝑦(V ∖ E )𝑥𝑥 E 𝑦)
11 epel 5541 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
1210, 11bitr2i 276 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑦(V ∖ E )𝑥)
1312ralbii 3075 . . . 4 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥)
14 eldif 3924 . . . . . 6 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴)))
154, 14mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴))
164elima 6036 . . . . 5 (𝑥 ∈ ((V ∖ E ) “ 𝐴) ↔ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
1715, 16xchbinx 334 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
182, 13, 173bitr4ri 304 . . 3 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ∀𝑦𝐴 𝑥𝑦)
1918eqabi 2863 . 2 (V ∖ ((V ∖ E ) “ 𝐴)) = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
201, 19eqtr4i 2755 1 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  cdif 3911   cint 4910   class class class wbr 5107   E cep 5537  ccnv 5637  cima 5641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-int 4911  df-br 5108  df-opab 5170  df-eprel 5538  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator