Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfint3 Structured version   Visualization version   GIF version

Theorem dfint3 35933
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
dfint3 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))

Proof of Theorem dfint3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4952 . 2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
2 ralnex 3069 . . . 4 (∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥 ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
3 vex 3481 . . . . . . . . 9 𝑦 ∈ V
4 vex 3481 . . . . . . . . 9 𝑥 ∈ V
53, 4brcnv 5895 . . . . . . . 8 (𝑦(V ∖ E )𝑥𝑥(V ∖ E )𝑦)
6 brv 5482 . . . . . . . . 9 𝑥V𝑦
7 brdif 5200 . . . . . . . . 9 (𝑥(V ∖ E )𝑦 ↔ (𝑥V𝑦 ∧ ¬ 𝑥 E 𝑦))
86, 7mpbiran 709 . . . . . . . 8 (𝑥(V ∖ E )𝑦 ↔ ¬ 𝑥 E 𝑦)
95, 8bitr2i 276 . . . . . . 7 𝑥 E 𝑦𝑦(V ∖ E )𝑥)
109con1bii 356 . . . . . 6 𝑦(V ∖ E )𝑥𝑥 E 𝑦)
11 epel 5591 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
1210, 11bitr2i 276 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑦(V ∖ E )𝑥)
1312ralbii 3090 . . . 4 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥)
14 eldif 3972 . . . . . 6 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴)))
154, 14mpbiran 709 . . . . 5 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴))
164elima 6084 . . . . 5 (𝑥 ∈ ((V ∖ E ) “ 𝐴) ↔ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
1715, 16xchbinx 334 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
182, 13, 173bitr4ri 304 . . 3 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ∀𝑦𝐴 𝑥𝑦)
1918eqabi 2874 . 2 (V ∖ ((V ∖ E ) “ 𝐴)) = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
201, 19eqtr4i 2765 1 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1536  wcel 2105  {cab 2711  wral 3058  wrex 3067  Vcvv 3477  cdif 3959   cint 4950   class class class wbr 5147   E cep 5587  ccnv 5687  cima 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-int 4951  df-br 5148  df-opab 5210  df-eprel 5588  df-xp 5694  df-cnv 5696  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator