Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfint3 Structured version   Visualization version   GIF version

Theorem dfint3 35228
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
dfint3 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))

Proof of Theorem dfint3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4951 . 2 𝐴 = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
2 ralnex 3070 . . . 4 (∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥 ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
3 vex 3476 . . . . . . . . 9 𝑦 ∈ V
4 vex 3476 . . . . . . . . 9 𝑥 ∈ V
53, 4brcnv 5881 . . . . . . . 8 (𝑦(V ∖ E )𝑥𝑥(V ∖ E )𝑦)
6 brv 5471 . . . . . . . . 9 𝑥V𝑦
7 brdif 5200 . . . . . . . . 9 (𝑥(V ∖ E )𝑦 ↔ (𝑥V𝑦 ∧ ¬ 𝑥 E 𝑦))
86, 7mpbiran 705 . . . . . . . 8 (𝑥(V ∖ E )𝑦 ↔ ¬ 𝑥 E 𝑦)
95, 8bitr2i 275 . . . . . . 7 𝑥 E 𝑦𝑦(V ∖ E )𝑥)
109con1bii 355 . . . . . 6 𝑦(V ∖ E )𝑥𝑥 E 𝑦)
11 epel 5582 . . . . . 6 (𝑥 E 𝑦𝑥𝑦)
1210, 11bitr2i 275 . . . . 5 (𝑥𝑦 ↔ ¬ 𝑦(V ∖ E )𝑥)
1312ralbii 3091 . . . 4 (∀𝑦𝐴 𝑥𝑦 ↔ ∀𝑦𝐴 ¬ 𝑦(V ∖ E )𝑥)
14 eldif 3957 . . . . . 6 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴)))
154, 14mpbiran 705 . . . . 5 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ 𝑥 ∈ ((V ∖ E ) “ 𝐴))
164elima 6063 . . . . 5 (𝑥 ∈ ((V ∖ E ) “ 𝐴) ↔ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
1715, 16xchbinx 333 . . . 4 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ¬ ∃𝑦𝐴 𝑦(V ∖ E )𝑥)
182, 13, 173bitr4ri 303 . . 3 (𝑥 ∈ (V ∖ ((V ∖ E ) “ 𝐴)) ↔ ∀𝑦𝐴 𝑥𝑦)
1918eqabi 2867 . 2 (V ∖ ((V ∖ E ) “ 𝐴)) = {𝑥 ∣ ∀𝑦𝐴 𝑥𝑦}
201, 19eqtr4i 2761 1 𝐴 = (V ∖ ((V ∖ E ) “ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2104  {cab 2707  wral 3059  wrex 3068  Vcvv 3472  cdif 3944   cint 4949   class class class wbr 5147   E cep 5578  ccnv 5674  cima 5678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-int 4950  df-br 5148  df-opab 5210  df-eprel 5579  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator