Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfint3 | Structured version Visualization version GIF version |
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
Ref | Expression |
---|---|
dfint3 | ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4886 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
2 | ralnex 3165 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 ¬ 𝑦◡(V ∖ E )𝑥 ↔ ¬ ∃𝑦 ∈ 𝐴 𝑦◡(V ∖ E )𝑥) | |
3 | vex 3434 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
4 | vex 3434 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | brcnv 5788 | . . . . . . . 8 ⊢ (𝑦◡(V ∖ E )𝑥 ↔ 𝑥(V ∖ E )𝑦) |
6 | brv 5389 | . . . . . . . . 9 ⊢ 𝑥V𝑦 | |
7 | brdif 5131 | . . . . . . . . 9 ⊢ (𝑥(V ∖ E )𝑦 ↔ (𝑥V𝑦 ∧ ¬ 𝑥 E 𝑦)) | |
8 | 6, 7 | mpbiran 705 | . . . . . . . 8 ⊢ (𝑥(V ∖ E )𝑦 ↔ ¬ 𝑥 E 𝑦) |
9 | 5, 8 | bitr2i 275 | . . . . . . 7 ⊢ (¬ 𝑥 E 𝑦 ↔ 𝑦◡(V ∖ E )𝑥) |
10 | 9 | con1bii 356 | . . . . . 6 ⊢ (¬ 𝑦◡(V ∖ E )𝑥 ↔ 𝑥 E 𝑦) |
11 | epel 5497 | . . . . . 6 ⊢ (𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦) | |
12 | 10, 11 | bitr2i 275 | . . . . 5 ⊢ (𝑥 ∈ 𝑦 ↔ ¬ 𝑦◡(V ∖ E )𝑥) |
13 | 12 | ralbii 3092 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ 𝑦◡(V ∖ E )𝑥) |
14 | eldif 3901 | . . . . . 6 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ (𝑥 ∈ V ∧ ¬ 𝑥 ∈ (◡(V ∖ E ) “ 𝐴))) | |
15 | 4, 14 | mpbiran 705 | . . . . 5 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ ¬ 𝑥 ∈ (◡(V ∖ E ) “ 𝐴)) |
16 | 4 | elima 5971 | . . . . 5 ⊢ (𝑥 ∈ (◡(V ∖ E ) “ 𝐴) ↔ ∃𝑦 ∈ 𝐴 𝑦◡(V ∖ E )𝑥) |
17 | 15, 16 | xchbinx 333 | . . . 4 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ ¬ ∃𝑦 ∈ 𝐴 𝑦◡(V ∖ E )𝑥) |
18 | 2, 13, 17 | 3bitr4ri 303 | . . 3 ⊢ (𝑥 ∈ (V ∖ (◡(V ∖ E ) “ 𝐴)) ↔ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) |
19 | 18 | abbi2i 2880 | . 2 ⊢ (V ∖ (◡(V ∖ E ) “ 𝐴)) = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} |
20 | 1, 19 | eqtr4i 2770 | 1 ⊢ ∩ 𝐴 = (V ∖ (◡(V ∖ E ) “ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 ∖ cdif 3888 ∩ cint 4884 class class class wbr 5078 E cep 5493 ◡ccnv 5587 “ cima 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-int 4885 df-br 5079 df-opab 5141 df-eprel 5494 df-xp 5594 df-cnv 5596 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |