![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version |
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3331 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
2 | 1 | abbidv 2811 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
3 | dfint2 4972 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
4 | dfint2 4972 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
5 | 2, 3, 4 | 3eqtr4g 2805 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2717 ∀wral 3067 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-rex 3077 df-int 4971 |
This theorem is referenced by: inteqi 4974 inteqd 4975 unissint 4996 uniintsn 5009 rint0 5012 intex 5362 intnex 5363 elreldm 5960 elxp5 7963 1stval2 8047 oev2 8579 fundmen 9096 xpsnen 9121 fiint 9394 fiintOLD 9395 elfir 9484 inelfi 9487 fiin 9491 cardmin2 10068 isfin2-2 10388 incexclem 15884 mreintcl 17653 ismred2 17661 fiinopn 22928 cmpfii 23438 ptbasfi 23610 fbssint 23867 shintcl 31362 chintcl 31364 zarcmplem 33827 inelpisys 34118 rankeq1o 36135 bj-0int 37067 bj-ismoored 37073 bj-snmoore 37079 bj-prmoore 37081 neificl 37713 heibor1lem 37769 elrfi 42650 elrfirn 42651 |
Copyright terms: Public domain | W3C validator |