| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version | ||
| Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3296 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
| 2 | 1 | abbidv 2795 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
| 3 | dfint2 4912 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
| 4 | dfint2 4912 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2707 ∀wral 3044 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rex 3054 df-int 4911 |
| This theorem is referenced by: inteqi 4914 inteqd 4915 unissint 4936 uniintsn 4949 rint0 4952 intex 5299 intnex 5300 elreldm 5899 elxp5 7899 1stval2 7985 oev2 8487 fundmen 9002 xpsnen 9025 fiint 9277 fiintOLD 9278 elfir 9366 inelfi 9369 fiin 9373 cardmin2 9952 isfin2-2 10272 incexclem 15802 mreintcl 17556 ismred2 17564 fiinopn 22788 cmpfii 23296 ptbasfi 23468 fbssint 23725 shintcl 31259 chintcl 31261 zarcmplem 33871 inelpisys 34144 rankeq1o 36159 bj-0int 37089 bj-ismoored 37095 bj-snmoore 37101 bj-prmoore 37103 neificl 37747 heibor1lem 37803 elrfi 42682 elrfirn 42683 |
| Copyright terms: Public domain | W3C validator |