| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version | ||
| Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3289 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
| 2 | 1 | abbidv 2797 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
| 3 | dfint2 4899 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
| 4 | dfint2 4899 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
| 5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2709 ∀wral 3047 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-rex 3057 df-int 4898 |
| This theorem is referenced by: inteqi 4901 inteqd 4902 unissint 4922 uniintsn 4935 rint0 4938 intex 5282 intnex 5283 elreldm 5875 elxp5 7853 1stval2 7938 oev2 8438 fundmen 8953 xpsnen 8974 fiint 9211 elfir 9299 inelfi 9302 fiin 9306 cardmin2 9889 isfin2-2 10207 incexclem 15740 mreintcl 17494 ismred2 17502 fiinopn 22814 cmpfii 23322 ptbasfi 23494 fbssint 23751 shintcl 31305 chintcl 31307 zarcmplem 33889 inelpisys 34162 rankeq1o 36204 bj-0int 37134 bj-ismoored 37140 bj-snmoore 37146 bj-prmoore 37148 neificl 37792 heibor1lem 37848 elrfi 42726 elrfirn 42727 |
| Copyright terms: Public domain | W3C validator |