| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version | ||
| Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3290 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
| 2 | 1 | abbidv 2799 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
| 3 | dfint2 4899 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
| 4 | dfint2 4899 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
| 5 | 2, 3, 4 | 3eqtr4g 2793 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 {cab 2711 ∀wral 3048 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-ral 3049 df-rex 3058 df-int 4898 |
| This theorem is referenced by: inteqi 4901 inteqd 4902 unissint 4922 uniintsn 4935 rint0 4938 intex 5284 intnex 5285 elreldm 5879 elxp5 7859 1stval2 7944 oev2 8444 fundmen 8960 xpsnen 8981 fiint 9218 elfir 9306 inelfi 9309 fiin 9313 cardmin2 9899 isfin2-2 10217 incexclem 15745 mreintcl 17499 ismred2 17507 fiinopn 22817 cmpfii 23325 ptbasfi 23497 fbssint 23754 shintcl 31312 chintcl 31314 zarcmplem 33915 inelpisys 34188 rankeq1o 36236 bj-0int 37166 bj-ismoored 37172 bj-snmoore 37178 bj-prmoore 37180 neificl 37814 heibor1lem 37870 elrfi 42812 elrfirn 42813 |
| Copyright terms: Public domain | W3C validator |