Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version |
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3342 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
2 | 1 | abbidv 2807 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
3 | dfint2 4881 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
4 | dfint2 4881 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
5 | 2, 3, 4 | 3eqtr4g 2803 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∀wral 3064 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-ral 3069 df-int 4880 |
This theorem is referenced by: inteqi 4883 inteqd 4884 unissint 4903 uniintsn 4918 rint0 4921 intex 5261 intnex 5262 elreldm 5844 elxp5 7770 1stval2 7848 oev2 8353 fundmen 8821 xpsnen 8842 fiint 9091 elfir 9174 inelfi 9177 fiin 9181 cardmin2 9757 isfin2-2 10075 incexclem 15548 mreintcl 17304 ismred2 17312 fiinopn 22050 cmpfii 22560 ptbasfi 22732 fbssint 22989 shintcl 29692 chintcl 29694 zarcmplem 31831 inelpisys 32122 rankeq1o 34473 bj-0int 35272 bj-ismoored 35278 bj-snmoore 35284 bj-prmoore 35286 neificl 35911 heibor1lem 35967 elrfi 40516 elrfirn 40517 |
Copyright terms: Public domain | W3C validator |