| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version | ||
| Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3287 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
| 2 | 1 | abbidv 2795 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
| 3 | dfint2 4901 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
| 4 | dfint2 4901 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
| 5 | 2, 3, 4 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2707 ∀wral 3044 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-ral 3045 df-rex 3054 df-int 4900 |
| This theorem is referenced by: inteqi 4903 inteqd 4904 unissint 4925 uniintsn 4938 rint0 4941 intex 5286 intnex 5287 elreldm 5881 elxp5 7863 1stval2 7948 oev2 8448 fundmen 8963 xpsnen 8985 fiint 9235 fiintOLD 9236 elfir 9324 inelfi 9327 fiin 9331 cardmin2 9914 isfin2-2 10232 incexclem 15761 mreintcl 17515 ismred2 17523 fiinopn 22804 cmpfii 23312 ptbasfi 23484 fbssint 23741 shintcl 31292 chintcl 31294 zarcmplem 33847 inelpisys 34120 rankeq1o 36144 bj-0int 37074 bj-ismoored 37080 bj-snmoore 37086 bj-prmoore 37088 neificl 37732 heibor1lem 37788 elrfi 42667 elrfirn 42668 |
| Copyright terms: Public domain | W3C validator |