![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version |
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3365 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
2 | 1 | abbidv 2860 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
3 | dfint2 4788 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
4 | dfint2 4788 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
5 | 2, 3, 4 | 3eqtr4g 2856 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 {cab 2775 ∀wral 3105 ∩ cint 4786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-ral 3110 df-int 4787 |
This theorem is referenced by: inteqi 4790 inteqd 4791 unissint 4810 uniintsn 4823 rint0 4826 intex 5136 intnex 5137 elreldm 5692 elxp5 7489 1stval2 7567 oev2 8004 fundmen 8436 xpsnen 8453 fiint 8646 elfir 8730 inelfi 8733 fiin 8737 cardmin2 9278 isfin2-2 9592 incexclem 15029 mreintcl 16700 ismred2 16708 fiinopn 21198 cmpfii 21706 ptbasfi 21878 fbssint 22135 shintcl 28803 chintcl 28805 inelpisys 31035 rankeq1o 33248 bj-0int 34018 bj-ismoored 34025 bj-snmoore 34031 neificl 34586 heibor1lem 34645 elrfi 38802 elrfirn 38803 |
Copyright terms: Public domain | W3C validator |