![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version |
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3321 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
2 | 1 | abbidv 2806 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
3 | dfint2 4953 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
4 | dfint2 4953 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
5 | 2, 3, 4 | 3eqtr4g 2800 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 {cab 2712 ∀wral 3059 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-ral 3060 df-rex 3069 df-int 4952 |
This theorem is referenced by: inteqi 4955 inteqd 4956 unissint 4977 uniintsn 4990 rint0 4993 intex 5350 intnex 5351 elreldm 5949 elxp5 7946 1stval2 8030 oev2 8560 fundmen 9070 xpsnen 9094 fiint 9364 fiintOLD 9365 elfir 9453 inelfi 9456 fiin 9460 cardmin2 10037 isfin2-2 10357 incexclem 15869 mreintcl 17640 ismred2 17648 fiinopn 22923 cmpfii 23433 ptbasfi 23605 fbssint 23862 shintcl 31359 chintcl 31361 zarcmplem 33842 inelpisys 34135 rankeq1o 36153 bj-0int 37084 bj-ismoored 37090 bj-snmoore 37096 bj-prmoore 37098 neificl 37740 heibor1lem 37796 elrfi 42682 elrfirn 42683 |
Copyright terms: Public domain | W3C validator |