Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version |
Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 3333 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
2 | 1 | abbidv 2808 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
3 | dfint2 4878 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
4 | dfint2 4878 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
5 | 2, 3, 4 | 3eqtr4g 2804 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 {cab 2715 ∀wral 3063 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-ral 3068 df-int 4877 |
This theorem is referenced by: inteqi 4880 inteqd 4881 unissint 4900 uniintsn 4915 rint0 4918 intex 5256 intnex 5257 elreldm 5833 elxp5 7744 1stval2 7821 oev2 8315 fundmen 8775 xpsnen 8796 fiint 9021 elfir 9104 inelfi 9107 fiin 9111 cardmin2 9688 isfin2-2 10006 incexclem 15476 mreintcl 17221 ismred2 17229 fiinopn 21958 cmpfii 22468 ptbasfi 22640 fbssint 22897 shintcl 29593 chintcl 29595 zarcmplem 31733 inelpisys 32022 rankeq1o 34400 bj-0int 35199 bj-ismoored 35205 bj-snmoore 35211 bj-prmoore 35213 neificl 35838 heibor1lem 35894 elrfi 40432 elrfirn 40433 |
Copyright terms: Public domain | W3C validator |