| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inteq | Structured version Visualization version GIF version | ||
| Description: Equality law for intersection. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| inteq | ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleq 3306 | . . 3 ⊢ (𝐴 = 𝐵 → (∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦)) | |
| 2 | 1 | abbidv 2802 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦}) |
| 3 | dfint2 4929 | . 2 ⊢ ∩ 𝐴 = {𝑥 ∣ ∀𝑦 ∈ 𝐴 𝑥 ∈ 𝑦} | |
| 4 | dfint2 4929 | . 2 ⊢ ∩ 𝐵 = {𝑥 ∣ ∀𝑦 ∈ 𝐵 𝑥 ∈ 𝑦} | |
| 5 | 2, 3, 4 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → ∩ 𝐴 = ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 {cab 2714 ∀wral 3052 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-ral 3053 df-rex 3062 df-int 4928 |
| This theorem is referenced by: inteqi 4931 inteqd 4932 unissint 4953 uniintsn 4966 rint0 4969 intex 5319 intnex 5320 elreldm 5920 elxp5 7924 1stval2 8010 oev2 8540 fundmen 9050 xpsnen 9074 fiint 9343 fiintOLD 9344 elfir 9432 inelfi 9435 fiin 9439 cardmin2 10018 isfin2-2 10338 incexclem 15857 mreintcl 17612 ismred2 17620 fiinopn 22844 cmpfii 23352 ptbasfi 23524 fbssint 23781 shintcl 31316 chintcl 31318 zarcmplem 33917 inelpisys 34190 rankeq1o 36194 bj-0int 37124 bj-ismoored 37130 bj-snmoore 37136 bj-prmoore 37138 neificl 37782 heibor1lem 37838 elrfi 42684 elrfirn 42685 |
| Copyright terms: Public domain | W3C validator |