MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intiin Structured version   Visualization version   GIF version

Theorem intiin 5039
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
intiin 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem intiin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfint2 4928 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
2 df-iin 4974 . 2 𝑥𝐴 𝑥 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
31, 2eqtr4i 2760 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  {cab 2712  wral 3050   cint 4926   ciin 4972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-ral 3051  df-int 4927  df-iin 4974
This theorem is referenced by:  trint  5257  relint  5809  intpreima  7070  ixpint  8947  firest  17449  efger  19705  subdrgint  20773  rintopn  22864  intcld  22995  iundifdifd  32510  iundifdif  32511  intxp  48719
  Copyright terms: Public domain W3C validator