| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intiin | Structured version Visualization version GIF version | ||
| Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4915 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iin 4961 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2756 | 1 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 {cab 2708 ∀wral 3045 ∩ cint 4913 ∩ ciin 4959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-ral 3046 df-int 4914 df-iin 4961 |
| This theorem is referenced by: trint 5235 relint 5785 intpreima 7045 ixpint 8901 firest 17402 efger 19655 subdrgint 20719 rintopn 22803 intcld 22934 iundifdifd 32497 iundifdif 32498 intxp 48824 |
| Copyright terms: Public domain | W3C validator |