MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intiin Structured version   Visualization version   GIF version

Theorem intiin 5010
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
intiin 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem intiin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfint2 4899 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
2 df-iin 4944 . 2 𝑥𝐴 𝑥 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
31, 2eqtr4i 2759 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2711  wral 3048   cint 4897   ciin 4942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-ral 3049  df-int 4898  df-iin 4944
This theorem is referenced by:  trint  5217  relint  5763  intpreima  7009  ixpint  8855  firest  17338  efger  19632  subdrgint  20720  rintopn  22825  intcld  22956  iundifdifd  32543  iundifdif  32544  intxp  48956
  Copyright terms: Public domain W3C validator