| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intiin | Structured version Visualization version GIF version | ||
| Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.) |
| Ref | Expression |
|---|---|
| intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4899 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 2 | df-iin 4944 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
| 3 | 1, 2 | eqtr4i 2757 | 1 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 {cab 2709 ∀wral 3047 ∩ cint 4897 ∩ ciin 4942 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-int 4898 df-iin 4944 |
| This theorem is referenced by: trint 5215 relint 5759 intpreima 7003 ixpint 8849 firest 17333 efger 19628 subdrgint 20716 rintopn 22822 intcld 22953 iundifdifd 32536 iundifdif 32537 intxp 48862 |
| Copyright terms: Public domain | W3C validator |