![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intiin | Structured version Visualization version GIF version |
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4952 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iin 5000 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2763 | 1 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 {cab 2709 ∀wral 3061 ∩ cint 4950 ∩ ciin 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-ral 3062 df-int 4951 df-iin 5000 |
This theorem is referenced by: trint 5283 relint 5819 intpreima 7071 ixpint 8918 firest 17377 efger 19585 subdrgint 20418 rintopn 22410 intcld 22543 iundifdifd 31788 iundifdif 31789 |
Copyright terms: Public domain | W3C validator |