MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intiin Structured version   Visualization version   GIF version

Theorem intiin 5008
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
intiin 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem intiin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfint2 4899 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
2 df-iin 4944 . 2 𝑥𝐴 𝑥 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
31, 2eqtr4i 2757 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  {cab 2709  wral 3047   cint 4897   ciin 4942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-ral 3048  df-int 4898  df-iin 4944
This theorem is referenced by:  trint  5215  relint  5759  intpreima  7003  ixpint  8849  firest  17333  efger  19628  subdrgint  20716  rintopn  22822  intcld  22953  iundifdifd  32536  iundifdif  32537  intxp  48862
  Copyright terms: Public domain W3C validator