MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intiin Structured version   Visualization version   GIF version

Theorem intiin 5023
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.)
Assertion
Ref Expression
intiin 𝐴 = 𝑥𝐴 𝑥
Distinct variable group:   𝑥,𝐴

Proof of Theorem intiin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfint2 4912 . 2 𝐴 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
2 df-iin 4958 . 2 𝑥𝐴 𝑥 = {𝑦 ∣ ∀𝑥𝐴 𝑦𝑥}
31, 2eqtr4i 2755 1 𝐴 = 𝑥𝐴 𝑥
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  {cab 2707  wral 3044   cint 4910   ciin 4956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-ral 3045  df-int 4911  df-iin 4958
This theorem is referenced by:  trint  5232  relint  5782  intpreima  7042  ixpint  8898  firest  17395  efger  19648  subdrgint  20712  rintopn  22796  intcld  22927  iundifdifd  32490  iundifdif  32491  intxp  48820
  Copyright terms: Public domain W3C validator