![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intiin | Structured version Visualization version GIF version |
Description: Class intersection in terms of indexed intersection. Definition in [Stoll] p. 44. (Contributed by NM, 28-Jun-1998.) |
Ref | Expression |
---|---|
intiin | ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4972 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
2 | df-iin 5018 | . 2 ⊢ ∩ 𝑥 ∈ 𝐴 𝑥 = {𝑦 ∣ ∀𝑥 ∈ 𝐴 𝑦 ∈ 𝑥} | |
3 | 1, 2 | eqtr4i 2771 | 1 ⊢ ∩ 𝐴 = ∩ 𝑥 ∈ 𝐴 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 {cab 2717 ∀wral 3067 ∩ cint 4970 ∩ ciin 5016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-ral 3068 df-int 4971 df-iin 5018 |
This theorem is referenced by: trint 5301 relint 5843 intpreima 7103 ixpint 8983 firest 17492 efger 19760 subdrgint 20826 rintopn 22936 intcld 23069 iundifdifd 32584 iundifdif 32585 |
Copyright terms: Public domain | W3C validator |