MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfint Structured version   Visualization version   GIF version

Theorem nfint 4798
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1 𝑥𝐴
Assertion
Ref Expression
nfint 𝑥 𝐴

Proof of Theorem nfint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4790 . 2 𝐴 = {𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
2 nfint.1 . . . 4 𝑥𝐴
3 nfv 1896 . . . 4 𝑥 𝑦𝑧
42, 3nfral 3193 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2957 . 2 𝑥{𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2949 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2777  wnfc 2935  wral 3107   cint 4788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ral 3112  df-int 4789
This theorem is referenced by:  onminsb  7377  oawordeulem  8037  nnawordex  8120  rankidb  9082  cardmin2  9280  cardaleph  9368  cardmin  9839  ldsysgenld  31032  sltval2  32774  aomclem8  39167
  Copyright terms: Public domain W3C validator