MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfint Structured version   Visualization version   GIF version

Theorem nfint 4905
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1 𝑥𝐴
Assertion
Ref Expression
nfint 𝑥 𝐴

Proof of Theorem nfint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4897 . 2 𝐴 = {𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
2 nfint.1 . . . 4 𝑥𝐴
3 nfv 1915 . . . 4 𝑥 𝑦𝑧
42, 3nfralw 3279 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2900 . 2 𝑥{𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2892 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2709  wnfc 2879  wral 3047   cint 4895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-int 4896
This theorem is referenced by:  onminsb  7727  oawordeulem  8469  nnawordex  8552  rankidb  9693  cardmin2  9892  cardaleph  9980  cardmin  10455  sltval2  27595  ldsysgenld  34173  onvf1odlem2  35148  aomclem8  43164  naddwordnexlem4  43504
  Copyright terms: Public domain W3C validator