MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfint Structured version   Visualization version   GIF version

Theorem nfint 4889
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1 𝑥𝐴
Assertion
Ref Expression
nfint 𝑥 𝐴

Proof of Theorem nfint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4881 . 2 𝐴 = {𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
2 nfint.1 . . . 4 𝑥𝐴
3 nfv 1917 . . . 4 𝑥 𝑦𝑧
42, 3nfralw 3151 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2913 . 2 𝑥{𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2905 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2715  wnfc 2887  wral 3064   cint 4879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-int 4880
This theorem is referenced by:  onminsb  7644  oawordeulem  8385  nnawordex  8468  rankidb  9558  cardmin2  9757  cardaleph  9845  cardmin  10320  ldsysgenld  32128  sltval2  33859  aomclem8  40886
  Copyright terms: Public domain W3C validator