| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfint.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4897 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 4 | 2, 3 | nfralw 3279 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
| 5 | 4 | nfab 2900 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
| 6 | 1, 5 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2709 Ⅎwnfc 2879 ∀wral 3047 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-int 4896 |
| This theorem is referenced by: onminsb 7727 oawordeulem 8469 nnawordex 8552 rankidb 9693 cardmin2 9892 cardaleph 9980 cardmin 10455 sltval2 27595 ldsysgenld 34173 onvf1odlem2 35148 aomclem8 43164 naddwordnexlem4 43504 |
| Copyright terms: Public domain | W3C validator |