MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfint Structured version   Visualization version   GIF version

Theorem nfint 4923
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1 𝑥𝐴
Assertion
Ref Expression
nfint 𝑥 𝐴

Proof of Theorem nfint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4915 . 2 𝐴 = {𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
2 nfint.1 . . . 4 𝑥𝐴
3 nfv 1914 . . . 4 𝑥 𝑦𝑧
42, 3nfralw 3287 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2898 . 2 𝑥{𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2890 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2708  wnfc 2877  wral 3045   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-int 4914
This theorem is referenced by:  onminsb  7773  oawordeulem  8521  nnawordex  8604  rankidb  9760  cardmin2  9959  cardaleph  10049  cardmin  10524  sltval2  27575  ldsysgenld  34157  onvf1odlem2  35098  aomclem8  43057  naddwordnexlem4  43397
  Copyright terms: Public domain W3C validator