| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfint.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4912 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 4 | 2, 3 | nfralw 3285 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
| 5 | 4 | nfab 2897 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
| 6 | 1, 5 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2707 Ⅎwnfc 2876 ∀wral 3044 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-int 4911 |
| This theorem is referenced by: onminsb 7770 oawordeulem 8518 nnawordex 8601 rankidb 9753 cardmin2 9952 cardaleph 10042 cardmin 10517 sltval2 27568 ldsysgenld 34150 onvf1odlem2 35091 aomclem8 43050 naddwordnexlem4 43390 |
| Copyright terms: Public domain | W3C validator |