Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4840 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfralw 3153 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2925 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2917 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2735 Ⅎwnfc 2899 ∀wral 3070 ∩ cint 4838 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-int 4839 |
This theorem is referenced by: onminsb 7513 oawordeulem 8190 nnawordex 8273 rankidb 9262 cardmin2 9461 cardaleph 9549 cardmin 10024 ldsysgenld 31647 sltval2 33444 aomclem8 40400 |
Copyright terms: Public domain | W3C validator |