| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfint.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4924 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 4 | 2, 3 | nfralw 3291 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
| 5 | 4 | nfab 2904 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
| 6 | 1, 5 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2713 Ⅎwnfc 2883 ∀wral 3051 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-int 4923 |
| This theorem is referenced by: onminsb 7788 oawordeulem 8566 nnawordex 8649 rankidb 9814 cardmin2 10013 cardaleph 10103 cardmin 10578 sltval2 27620 ldsysgenld 34191 aomclem8 43085 naddwordnexlem4 43425 |
| Copyright terms: Public domain | W3C validator |