![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4972 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfralw 3317 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2914 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2717 Ⅎwnfc 2893 ∀wral 3067 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-int 4971 |
This theorem is referenced by: onminsb 7830 oawordeulem 8610 nnawordex 8693 rankidb 9869 cardmin2 10068 cardaleph 10158 cardmin 10633 sltval2 27719 ldsysgenld 34124 aomclem8 43018 naddwordnexlem4 43363 |
Copyright terms: Public domain | W3C validator |