| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
| Ref | Expression |
|---|---|
| nfint.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4915 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
| 2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
| 4 | 2, 3 | nfralw 3287 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
| 5 | 4 | nfab 2898 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
| 6 | 1, 5 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: {cab 2708 Ⅎwnfc 2877 ∀wral 3045 ∩ cint 4913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-int 4914 |
| This theorem is referenced by: onminsb 7773 oawordeulem 8521 nnawordex 8604 rankidb 9760 cardmin2 9959 cardaleph 10049 cardmin 10524 sltval2 27575 ldsysgenld 34157 onvf1odlem2 35098 aomclem8 43057 naddwordnexlem4 43397 |
| Copyright terms: Public domain | W3C validator |