MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfint Structured version   Visualization version   GIF version

Theorem nfint 4961
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
Hypothesis
Ref Expression
nfint.1 𝑥𝐴
Assertion
Ref Expression
nfint 𝑥 𝐴

Proof of Theorem nfint
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4953 . 2 𝐴 = {𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
2 nfint.1 . . . 4 𝑥𝐴
3 nfv 1912 . . . 4 𝑥 𝑦𝑧
42, 3nfralw 3309 . . 3 𝑥𝑧𝐴 𝑦𝑧
54nfab 2909 . 2 𝑥{𝑦 ∣ ∀𝑧𝐴 𝑦𝑧}
61, 5nfcxfr 2901 1 𝑥 𝐴
Colors of variables: wff setvar class
Syntax hints:  {cab 2712  wnfc 2888  wral 3059   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-int 4952
This theorem is referenced by:  onminsb  7814  oawordeulem  8591  nnawordex  8674  rankidb  9838  cardmin2  10037  cardaleph  10127  cardmin  10602  sltval2  27716  ldsysgenld  34141  aomclem8  43050  naddwordnexlem4  43391
  Copyright terms: Public domain W3C validator