![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfint | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for intersection. (Contributed by NM, 2-Feb-1997.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) |
Ref | Expression |
---|---|
nfint.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfint | ⊢ Ⅎ𝑥∩ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfint2 4953 | . 2 ⊢ ∩ 𝐴 = {𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} | |
2 | nfint.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | nfv 1912 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝑧 | |
4 | 2, 3 | nfralw 3309 | . . 3 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 |
5 | 4 | nfab 2909 | . 2 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧 ∈ 𝐴 𝑦 ∈ 𝑧} |
6 | 1, 5 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥∩ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: {cab 2712 Ⅎwnfc 2888 ∀wral 3059 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-int 4952 |
This theorem is referenced by: onminsb 7814 oawordeulem 8591 nnawordex 8674 rankidb 9838 cardmin2 10037 cardaleph 10127 cardmin 10602 sltval2 27716 ldsysgenld 34141 aomclem8 43050 naddwordnexlem4 43391 |
Copyright terms: Public domain | W3C validator |