Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem2 Structured version   Visualization version   GIF version

Theorem dfon2lem2 33760
Description: Lemma for dfon2 33768. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem2 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem dfon2lem2
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝑥𝐴𝜑𝜓) → 𝑥𝐴)
21ss2abi 4000 . . 3 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ {𝑥𝑥𝐴}
3 df-pw 4535 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
42, 3sseqtrri 3958 . 2 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝒫 𝐴
5 sspwuni 5029 . 2 ({𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝒫 𝐴 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴)
64, 5mpbi 229 1 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  {cab 2715  wss 3887  𝒫 cpw 4533   cuni 4839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-uni 4840
This theorem is referenced by:  dfon2lem3  33761  dfon2lem7  33765
  Copyright terms: Public domain W3C validator