Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem2 Structured version   Visualization version   GIF version

Theorem dfon2lem2 35779
Description: Lemma for dfon2 35787. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem2 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem dfon2lem2
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝑥𝐴𝜑𝜓) → 𝑥𝐴)
21ss2abi 4033 . . 3 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ {𝑥𝑥𝐴}
3 df-pw 4568 . . 3 𝒫 𝐴 = {𝑥𝑥𝐴}
42, 3sseqtrri 3999 . 2 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝒫 𝐴
5 sspwuni 5067 . 2 ({𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝒫 𝐴 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴)
64, 5mpbi 230 1 {𝑥 ∣ (𝑥𝐴𝜑𝜓)} ⊆ 𝐴
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  {cab 2708  wss 3917  𝒫 cpw 4566   cuni 4874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-ss 3934  df-pw 4568  df-uni 4875
This theorem is referenced by:  dfon2lem3  35780  dfon2lem7  35784
  Copyright terms: Public domain W3C validator