Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon2lem2 | Structured version Visualization version GIF version |
Description: Lemma for dfon2 33674. (Contributed by Scott Fenton, 28-Feb-2011.) |
Ref | Expression |
---|---|
dfon2lem2 | ⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . 4 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓) → 𝑥 ⊆ 𝐴) | |
2 | 1 | ss2abi 3996 | . . 3 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ {𝑥 ∣ 𝑥 ⊆ 𝐴} |
3 | df-pw 4532 | . . 3 ⊢ 𝒫 𝐴 = {𝑥 ∣ 𝑥 ⊆ 𝐴} | |
4 | 2, 3 | sseqtrri 3954 | . 2 ⊢ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝒫 𝐴 |
5 | sspwuni 5025 | . 2 ⊢ ({𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝒫 𝐴 ↔ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴) | |
6 | 4, 5 | mpbi 229 | 1 ⊢ ∪ {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝜑 ∧ 𝜓)} ⊆ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1085 {cab 2715 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: dfon2lem3 33667 dfon2lem7 33671 |
Copyright terms: Public domain | W3C validator |